5G base stations - transition from 4G

As the world transitions from 4G to 5G, the shift to these new, far more powerful networks will also require a shift in the way base stations are designed and configured.

Moving up the mast
In the era of 4G, network installations typically relied upon heavy duty infrastructure such as large power masts and passive cables and antennas, with much of the technology concentrated around the ‘shed’, aka the lower ends of the base station. As we move into the 5G era, however, this structure is set to change, with a large number of active, fiber-cable antennas situated at the top of the communications tower rather than at the base of the structure.

From few large to many small cells
Due to the higher-band frequency spectrum required by 5G, network infrastructure must make use of multiple small-cell antennas that can pick up these mmWave frequencies and allow for the rapid transfer of information. This is a significant departure from 4G, which tends to utilize a more limited number of larger-cell antennas instead.
Massive MIMO

With the roll-out of next-generation networks, multiantenna technology is shifting from 4G MIMO to 5G Massive MIMO.

How does Massive MIMO work?
Large antenna arrays – those compromising 16, 32, or 64 array elements – can be exploited by 5G networks to massively boost data capacity while maximizing energy efficiency in a process known as Massive MIMO. These large arrays are used to exploit spatial multiplexing, essentially providing a number of parallel data-streams within the same resource block. This increases the amount of data that can be sent and received on a network while avoiding the need for new towers and infrastructure.

Benefits of Massive MIMO
With Massive MIMO in place, wireless data networks will be capable of delivering seamless connectivity at higher data rate for a much greater number of users – all while reducing the amount of power consumed.

Through Massive MIMO, beamforming techniques will allow multiple antennas to form multiple distinct connections in phased adaptive array technology. This means that beams can be formed to cater to just a single user at a time, improving connectivity and capacity without the intricate design requirements of intercell coordination. In such a setup, the network can accommodate more users than ever before, with each user enjoying an interference-free and latency-free connection to the base station.

Massive MIMO features
- More active antenna elements
- More focused energy
- Less interference
- More spatial multiplexing layers
- Better cellular throughput and coverage
- Large number of users served simultaneously
- Introduces 2 dimensional beamforming
Beamforming

Beamforming is set to be a cornerstone of any successful 5G Massive MIMO setup.

This technique leverages multiple antennas to control the direction of a wavefront and target it at a specific receiving device. This is done by weighting the magnitude and phase of individual antenna signals in an array of antennas positioned at least half a wavelength apart from one another.

Overlapping waves from multiple antennas will either produce constructive or destructive interference, thereby strengthening or weakening the signal. This has the effect of directing the beam towards precise locations, delivering a much more focused connection for users. There are three sub-categories of beamforming, known as digital beamforming, analog beamforming and hybrid beamforming.

Digital beamforming
- Digital receivers are stationed at each end of each antenna
- Signal is digitized and noise and distortion are decorrelated
- Multiple beams can be formed in the digital beam-forming processor
- Offers improved range and greater precision and control, but at greater cost

Analog beamforming
- Creates a signal beam by applying a phase delay to each antenna
- Echo signals are combined at RF carrier-frequency level
- Signals are downconverted to basic band or intermediate frequency
- An analog-to-digital converter then digitizes the signal

Hybrid beamforming
- Combines analog beamforming with digital precoding
- Intelligently forms and receives signal patterns from a large antenna array
- Ability to create an ‘off-the-shelf’ phased array solution

Directional beams are created by varying the phase(delay) and amplitude of each antenna transmission.
5G additional challenges

The proliferation of 5G will bring with it enormous challenges for engineers to overcome, from complex installations on unconventional structures to increased regulations and technical requirements.

Increased complexity
Compared with the structure of an ordinary 4G base transceiver station (BTS), the architecture required for 5G is incredibly complex. As discussed earlier, small 5G cells will need to be integrated high up the mast in a modular fashion to allow for improved scalability, while the shift to mMIMO and techniques such as beamforming – using a range of antennae to control the direction of a signal beam – will add another layer of complexity to the process.

Greater technical requirements
As the technical requirements for 5G continue to be standardised, it has become increasingly clear just how high the technical challenges are for operators. Both consumers and industry have enormous expectations for 5G, including latency of one millisecond, the ability to connect around 100x the number of devices as 4G and 1000x the bandwidth per area – not to mention reduced energy network usage and near-perfect coverage. When used for applications such as smart factories and autonomous vehicles, it is essential that these ambitious requirements are met.

Proliferation of technology
To meet the demand for comprehensive network coverage and enable the next generation of automated vehicles, 5G will need to be integrated across huge swathes of both the built and natural environment. Beyond traditional base station integrations, this will include complex installations on small-scale infrastructure such as lampposts and houses, which will need to appear as unobtrusive as possible and comply with local planning regulations.

Base station quantity (RRU/AAU) forecast
5G-compatible base stations keep increasing
Source: Murata estimation based on data from Mobile Experts

Opportunities
New devices and systems to address challenges
As the next phase of the 5G roll-out occurs, opportunities will arise for manufacturers and engineers with the capacity to solve some of these challenges. Until recently, 5G integration has primarily focussed on large-scale base stations and buildings, but the next stage will focus more on smaller-scale sites that can fill the gaps in network coverage. Anyone with the technical know-how to adapt 5G architecture to these less conventional sites will likely gain a strong competitive advantage.
Base station thermal management

An inevitable consequence of mMIMO and beamforming – and the consequence of moving hardware from the large base-station ‘shed’ to smaller assemblies at the mast head – is an increase in generated heat, making thermal management a major issue for 5G installations.

Reasons for thermal build-up
The exponential scaling up of processing capacity and power that comes with 5G will naturally lead to increased heat generation. The transition from MIMO to Massive MIMO will create antenna arrays with up to 64 array elements, representing a huge amount of hardware with unprecedented processing power that may be at risk of overheating.

Performance & reliability
As temperatures increase, the performance and reliability of the 5G network will go down. Antennas could start to malfunction; processing could slow, and the energy efficiency of the site could be drastically reduced. In severe cases of overheating, the lifespan of certain components could also be impeded.

Maintenance costs
All of the negative impacts of excessive heat will inevitably have an impact on network providers’ bottom lines. While a 5G installation is intended to last around a decade with minimal upkeep, poor thermal management is likely to mean ongoing maintenance costs and high levels of expenditure, which could be passed on to the end consumer.

Contents
Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors
Environmental

To develop truly global 5G coverage, base stations will need to be installed across the world in some extremely inhospitable environments. This means that the new generation of base stations needs to be designed with environmental challenges and extreme weather in mind, such as the effects of humidity, heat and wind.

Humidity
Base stations located in more tropical or humid climates should be engineered to withstand high levels of humidity and still maintain their performance and lifespan. Both the 5G cells and the base station should remain functional even when subjected to severely wet and humid conditions.

Temperature
Even in extremely hot climates, 5G components must remain reliable, stable and energy efficient to prevent downtime, malfunctions and reduction in lifespan. The same applies in cold climates, where components should continue to function even at several degrees under freezing.

Wind
Since a great deal of the hardware for any 5G installation is located at the top of the mast, rather than lower down, this new era of base stations will be increasingly vulnerable to the effects of wind vibrations. Though small cells tend to be relatively light, they can nonetheless exercise a sail-like effect on the structure and weigh the towers down. For this reason, 5G components should be engineered to be as small and light as possible in order to minimise risk and reduce the need for ongoing maintenance.

Wind-induced vibration

Weight reduction

Wind

claration guide 5G - base station
© Murata Manufacturing Co. Ltd. Ref: K72E Nov 01 2021

Content
Overview
4G-5G progression
Massive MIMO
Beamforming

Challenges
Thermal
Environmental
Installation/maintenance

Component solutions
Construction
Miniaturization
Efficiency & reliability

Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC

Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors
Installation & maintenance

Installation
A number of applications for 5G, most obviously autonomous electric vehicles, require a continuous line of sight between the 5G transmitter and the connected device. In order to attain this level of spotless coverage, a huge number of installations will be needed, which in turn will necessitate a huge amount of climbing for installation engineers. Designers of 5G components will therefore have to balance requirements for performance and reliability against the unique labour regulations that apply across various regions regarding the height of the towers, the weight of the parts and the number of workers allowed per installation. This means that the smallest and lightest configuration possible is also going to be the most cost-effective one.

Maintenance & Monitoring
While using reliable components is the best way to reducing maintenance costs, keeping size and weight to a minimum is also advantageous when up-tower assemblies need to be replaced. In addition, a state-of-the-art monitoring system that can continuously track and analyse the condition and performance of the assembly and submit intelligence to relevant parties will be a crucial tool in the fight to reduce both costs and labour.
Component-level considerations

To design effective and long-lasting 5G infrastructure, the architecture of the base stations should be considered right down to the level of components. When selecting a manufacturer, the following four key factors should be taken into consideration.

Futureproofing and innovation
5G is an area that is constantly evolving, with new engineering challenges and solutions arising at every stage of its roll-out. To keep costs to a minimum and remain on the front foot, network providers should opt for a supplier with a history of innovation and the ability to think ahead and future-proof their products. Components designed and manufactured with the future in mind will be more likely to meet the distinctive challenges that 5G presents, ensuring high performance and longevity even when integrated with new types of technology.

Quality and reliability
When it comes to large-scale engineering projects such as 5G integration, it’s essential to build long-lasting, robust structures that are able to function continuously for several years without regular maintenance. This principle applies right down to the components that form an integral part of any next generation 5G base station. Since maintenance on communication tower assemblies can be a tricky logistical problem, it’s important to look for reliable and long-lasting components, ideally with a 10-year warranty that will radically reduce ongoing maintenance costs.

Manufacturing strength and supply
As 5G networks are built and expanded, suppliers and manufacturers who can produce components quickly and at scale are likely to be given preference over less reliable, smaller-scale suppliers. As 5G is a truly global project, companies with a presence all over the globe will also have an advantage, offering seamless supply chains into multiple regions and the manufacturing capacity to ensure that networks can continue to scale as needed without unnecessary delays.

Industry understanding
5G is set to represent a massive leap forward in terms of the technical requirements demanded of networks, scaling up the number of connected devices exponentially with higher data rates and much lower latency. To enable this incredible level of connectivity, a split with the network architecture of the past has been required, requiring new solutions to challenges. For these reasons, it is important to pick a components supplier who has a good grounding in 5G and can offer in-depth industry knowledge, understanding the unique requirements and options for different types of installation.

Global market share (for all applications - including 5G base station)

- MLCCs: 40%
- Multilayer LC filters: 40%
- High frequency inductors: 60%

Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors
Components constructed to meet the 5G challenges

Materials, manufacturing processes and construction innovation are key to optimising performance in 5G base stations.

Design and manufacture
With so many challenges facing the new generation of 5G network operators – balancing requirements for optimal energy efficiency against the need to support ultra-powerful networks – components in any 5G infrastructure should be fully optimized for performance and reliability.

A supplier with a deep understanding of materials and manufacturing processes can design 5G components right down to the molecular level, ensuring that every aspect of the product is fully suited its application. This careful optimization goes far beyond the initial design phase. It ensures complete oversight and control from initial conception right through to the front- and back-end development and analytics. This allows networks to meet the stringent requirements demanded of them, all while maximizing energy efficiency and minimizing wastage.

Innovation
By utilizing the latest manufacturing processes and materials and partnering with industry innovators, components suppliers can optimize their designs for all types of 5G installation, from densely populated urban settings to smaller-scale suburban sites. They can also anticipate future developments and design their products for adaptability and versatility.
Miniature components

Reducing the size of base station sub-assemblies while increasing their performance requires continuous reductions in the size and weight of components.

Environmental
The transition from traditional ‘shed’-oriented BTS configurations to assemblies of small-cell antennas high up on the comms-tower has made the need for ultra-small, lightweight components an imperative. With wind vibrations exercising a particularly destabilizing effect on the towers, minimizing the weight burden of the assembly will help to secure the overall structure against these environmental conditions.

Installation
With regulations and logistical issues surrounding 5G installations in high-up locations, having incredibly light-weight and miniaturized components will help to streamline the installation process. Legal restrictions on the weight of loads that can be carried up the mast can thereby be more easily adhered to, allowing for greater speed and, more importantly, greater safety.

Murata’s history of component miniaturisation predates the invention of semiconductors.
Efficiency and long-term reliability

Keeping maintenance costs down while increasing the number of 5G small cell base stations will have a huge impact on the profitability of 5G networks.

High-temperature performance
In the initial phases of 5G expansion, installing new networks will require a careful balancing of cost-to-user against cost-to-business. This careful balancing act will require operators to consider the ongoing costs of their operations, seeking to limit ongoing maintenance and downtime to an absolute minimum.

With this in mind, sourcing components that have been deeply designed for optimal thermal management will be a major concern. Every stage of the design and manufacturing process – right from the original selection of materials – will be crucial in minimizing the adverse effects of heat generation. If components can maintain their performance in extreme thermal conditions, the overall energy efficiency of the assembly will be increased and the need for regular maintenance will be drastically reduced.

Reliability and ease of maintenance
Integrating a 5G network requires clever logistics, a great deal of engineering expertise and a large financial investment, so it’s incredibly important that, once installed, the architecture is reliable and long-lasting. With high-quality components that can be consistently monitored for performance and condition, the burden of high maintenance costs can be reduced, ensuring that a network will continue to operate seamlessly long after the initial installation.
Applications

With the adoption of 5G technology the volume and variety of mobile traffic is expected to grow dramatically, this will be likely driven primarily by smartphone video or game consumption and new types of connected devices.

Base station infrastructure will need to significantly adapt to ensure quality of experience. Murata is committed to developing component solutions to support these new device challenges. Especially in critical areas such as:

- **RRU/AAU**
 Remote Radio Unit / Active Antenna Unit
 Either alongside passive antennas or within active antenna arrays.

- **PA**
 Power Amplifier
 Power amplifier is inside of RRU. Here, we introduce individually because Murata has specific products here which support high power and efficiency.

- **BBU/DU/CU**
 Baseband Unit / Distributed Unit / Centralized Unit
 The BBU/DU/CU is placed in the equipment room and connected with the RRU via optical fiber. These are responsible for communication through the physical interface and is in a virtualization trend.

- **MEC**
 Multi-access edge computing
 Hardware can be located in a number of locations including Distributed Units (DUs), alongside Centralized Units or within an edge datacenter.
RRU/AAU
Remote Radio Unit/Active Antenna Unit (sub 6GHz)

Macro / Small Cell - RF circuit
5G is targeting two frequency bands: sub-6 GHz and mmWave and it is expected that sub-6 GHz bands will be the backbone 5G infrastructure. For the mmWave and sub-6 GHz range with channel bandwidths of up to 100 MHz, components designed to support 4G infrastructure will be placed under higher demands.

Through our close relationship with the telecom industry Murata has continued to produce components that meet these challenges with ultra high reliability, high performance miniature components and modules.
RRU/AAU
Remote Radio Unit/Active Antenna Unit (mmWave)

5G is targeting two frequency bands: sub-6 GHz and mmWave and it is expected that sub-6 GHz bands will be the backbone 5G infrastructure. For the mmWave and sub-6 GHz range with channel bandwidths of up to 100 MHz, components designed to support 4G infrastructure will be placed under higher demands.

Through our close relationship with the telecom industry Murata has continued to produce components that meet these challenges with ultra high reliability, high performance miniature components and modules.

Other products are available for use in general circuit designs for base stations

Find out more

Contents
Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power
Batteries
Sensors

© Murata Manufacturing Co. Ltd. Ref: K72E Nov 01 2021 15
PA Power Amplifier

The power amplifier takes the low-power RF signal, at the desired frequency and with data encoding/modulation, and boosts the signal strength to what is necessary for the design (anywhere from milliwatts to kilowatts) while the signal shape, format, and mode remain unchanged.

In RF output around 100 mW or less, the PA may be integrated into the RF transmit or transceiver IC. This can save BOM cost, but care must be taken with the physical placement of the RF IC and the antenna, due to the challenges of RF signal routing. The design of the on-chip PA can also force difficult compromises on its performance or that of the associated RF circuitry.
BBU/DU/CU

Baseband Unit / Distributed Unit / Centralized Unit

With the adoption of 5G technology the volume and variety of mobile traffic is expected to grow dramatically, this will be likely driven primarily by smartphone video or game consumption and new types of connected devices.

Traditional BBU (BaseBand Unit) will need to adapt to these new challenges posed to telecom infrastructure to maintain QoE (Quality of Experience). This will include introducing the virtualization technology to minimize operating costs, foot space and power requirements.

Murata has worked closely with the telecom providers to understand these challenges and we have introduced new technologies to meet the demands of 5G infrastructure.
MEC
Multi-access Edge Computing

MEC was established to realize URLLC (ultra-high reliability and ultra-low delay) - a key 5G requirement. Equipment for MEC can be added as additional hardware, incorporated into the BBU/DU/CU, or as part of a larger edge datacenter.

MEC at:
1. Distributed Unit (DU)
2. Centralised Unit (CU)
3. Edge datacenter
RF components
LC filters, couplers, baluns, dividers, switches & digital step attenuators (DSAs)

Murata and pSemi, a Murata company, offer innovative solutions to 5G challenges with world-leading expertise in LTCC (Low Temperature Cofire Ceramics), multilayer construction and RFIC design.

Applications
- RRU/AAU

RF components in sub-6 m-Mimo
- LC filter
- Coupler
- Balun
- Divider
- RF Switch
- RF DSA

Low power area

TXIC
50Ω differential

RXIC
1000 differential

RF SoC
DAC/ADC incl.

More about LC filters
More about RF switches
More about RF DSAs
RF components
LC filters, couplers, baluns & dividers

LC filters are passive components which pass or reject a specific frequency band. These components are used for extracting the specific frequency band, or rejecting for noise reduction.

Couplers are RF passive devices used for coupling a specific frequency from an inputted RF signal. These products are used for power level control of transmitters.

Baluns are used for converting between a balanced transmission line and an unbalanced transmission line.

Dividers are the component function to divide one high-frequency signal into two signals.

LTCC technology - Low Temperature Co-fired Ceramics

- **Inductor**
- **Ground**
- **Capacitor**
- **Strip line**

LTCC products

<table>
<thead>
<tr>
<th>Code type</th>
<th>Size (mm)</th>
<th>Size (inch)</th>
<th>Balun</th>
<th>Coupler</th>
<th>Divider</th>
<th>BPF</th>
<th>LRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^32</td>
<td>3.2 x 2.5</td>
<td>1210</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>L^31</td>
<td>3.2 x 1.6</td>
<td>1206</td>
<td></td>
<td>○</td>
<td></td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>L^2H</td>
<td>2.5 x 2.0</td>
<td>1008</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>L^21</td>
<td>2.0 x 1.25</td>
<td>0805</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>L^18</td>
<td>1.6 x 0.8</td>
<td>0603</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Applications

- RRU/AAU
- RRU/AAU mmWave

More about RF switches

More about RF DSAs

Contents

Overview
- 4G-5G progression
- Massive MIMO
- Beamforming

Challenges
- Thermal
- Environmental
- Installation/maintenance

Component solutions
- Construction
- Miniaturization
- Efficiency & reliability

Applications
- RRU/AAU: sub 6GHz mmWave
- Power amplifier
- BBU/DU/CU
- MEC

Murata innovation
- RF components
- mmWave modules
- Substrates
- Connectors
- EMI
- Capacitors
- Power inductors
- Power
- Batteries
- Sensors
RF components

RF inductors

Murata offers a wide range of RF inductors to address the challenges of base station circuit design.

Wire Wound RF Inductors
To achieve the highest Q characteristics, Murata leveraged its unique winding technique to create the LQW2BAN_00 series in the smallest possible size (2.0 x 1.5 mm)

- Excellent Q characteristics unique to winding-type inductors
- The industry's highest allowable current for the size
- Broad lineup - 35 items
- Compatible with a wide range of inductance (3.2 nH to 200 nH)

LQW2BAN_00 series

High-Q chip inductors
Murata's LQP03HQ_02 series of compact 0201 standard size (0.6 x 0.3 x 0.4 mm) high-frequency chip inductors have some of the highest Q characteristics in the industry.

LQP03HQ_02 series

0402-size winding type choke inductors with large rated current and low DC resistance
Designed to address the effects of electromagnetic noise from communication frequency bands, the LQW15CA series of 0402-size (1.0 x 0.5 mm) winding type inductors feature excellent Z characteristics in the communication frequency bands (700 MHz to 2,700 MHz bands).

LQW15CA series

15µH inductor in 0402 size
The LQW15DN features a maximum inductance of 15 µH in 0402 size (1.0 x 0.5 mm) due to our unique materials and design technology, enabling contribution to the miniaturization and high-efficiency of the circuit.

LQW15DN series

Applications
- RRU/AAU mmWave
- RRU/AAU
- PA

RF components

- LC filters, couplers, baluns & dividers
- RF inductors
- RF switches
- RF digital step attenuator

All RF inductors

Contents

Overview
4G-5G progression
Massive MIMO
Beamforming

Challenges
Thermal
Environmental
Installation/maintenance

Component solutions
Construction
Miniaturization
Efficiency & reliability

Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC

Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors
RF components

Receiver protection SPDT switch

PE42823 is a HaRP™ technology-enhanced 50Ω SPDT RF receiver protection switch that delivers simple, repeatable and reliable receiver protection for 4G & 5G wireless infrastructure.

PE42823 also features high linearity and superior thermal performance in compact 16-lead 3 x 3 mm QFN package.

Key features

- Excellent single-event peak power handling of 51 dBm LTE
- Exceptional linearity across all frequencies
- IIP3: 70dBm
- P1dB: 46dBm
- 1.8/3.3V TTL compatible
- +105°C operating temperature
- High ESD performance of 4.5 kV HBM on RF pins to ground
- Packaging – 16-lead 3 x 3 mm QFN

Applications

• RRU/AAU

High reliability, small form factor receiver protection switch for 4G and 5G RRU/AAU
RF components

High isolation SP4T switch for DPD feedback

PE42442 is a HaRP™ technology-enhanced absorptive SP4T RF switch that enables 4G & 5G infrastructure designs using advanced linearization techniques to maximize spectral efficiency and data throughput. PE42442 also features high linearity and exceptional fast switching.

Key features

- High isolation
 - 61dB @ 900 MHz
 - 52 dB @ 2700MHz
 - 43 dB @ 4000 MHz
- High linearity
 - 97dBm IIP2
 - 58dBm IIP3
- +105°C operating temperature
- Fast switching time of 255 ns
- High ESD performance of 4kV HBM on RF pins to ground
- Packaging – 24-lead 4 × 4 mm QFN

Applications

- RRU/AAU

For some customers, pSemi products have a different sales channel from Murata Sales. Please confirm with sales@psemi.com
RF components

RF digital step attenuator

The PE43711 is a 50Ω, HaRP™ technology-enhanced, 7-bit RF digital step attenuator (DSA) that supports a broad frequency range from 9 kHz to 6 GHz.

It features glitch-less attenuation state transitions and supports 1.8V control voltage and an extended operating temperature range to +105 °C, making this device ideal for many broadband wireless applications.

Key features

- Flexible attenuation steps of 0.25 dB, 0.5 dB and 1 dB up to 31.75 dB
- Glitch-less attenuation state transitions
- Monotonicity: 0.25 dB up to 4GHz, 0.5 dB up to 5 GHz and 1 dB up to 6 GHz
- Extended +105°C operating temperature
- Parallel and serial programming interfaces
- Packaging—24-lead 4 × 4 mm QFN

Applications

- RRU/AAU mmWave
- RRU/AAU

For some customers, pSemi products have a different sales channel from Murata Sales. Please confirm with sales@psemi.com

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Frequency</th>
<th>IIP3</th>
<th>PG.1dB</th>
<th>Insertion loss</th>
<th>Attenuation Accuracy</th>
<th>Switching time</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE43711</td>
<td>RF DSA</td>
<td>9 kHz – 6 GHz</td>
<td>57 dBm</td>
<td>31 dBm</td>
<td>1.9 dB</td>
<td>±(0.15 + 1.5% of setting)</td>
<td>275 ns</td>
<td>24L 4x4 mm QFN</td>
</tr>
</tbody>
</table>

Find out more

More RF DSAs

© Murata Manufacturing Co. Ltd. Ref: K72E Nov 01 2021
RF digital step attenuator

The PE43508 is a 50Ω, HaRP™ technology-enhanced, 6-bit RF digital step attenuator (DSA) that supports a wide frequency range from 9k to 55 GHz.

The PE43508 features glitch-safe attenuation state transitions, supports 1.8V control voltage and optional VSS_EXT bypass mode to improve spurious performance, making this device ideal for test and measurement, point-to-point communication systems, and very small aperture terminals (VSAT).

Key features
- Wideband support up to 55 GHz
- Glitch-safe attenuation state transitions
- Flexible attenuation steps of 0.5 dB and 1 dB up to 31.5 dB
- Extended +105°C operating temperature
- Parallel and serial programming interfaces with serial addressability
- Flip-chip die

Applications
- RRU/AAU mmWave
- RRU/AAU

RF digital step attenuator

Provides an integrated digital control interface that supports both serial addressable and parallel programming of the attenuation.

Part Number Description Frequency Typ. IL IIP3 Attn range Attn step Interface Bits Package
PE43508 RF DSA 9 kHz – 55 GHz 5.90 dB max. 2.20 dB min. 50 dBm 31.50 dB 0.5/1.0 dB Parallel (latched, direct), serial addressable 6 Flip Chip

For some customers, pSemi products have a different sales channel from Murata Sales. Please confirm with sales@psemi.com

More RF DSAs

Contents
- Overview
 - 4G-5G progression
 - Massive MIMO
 - Beamforming
- Challenges
 - Thermal
 - Environmental
 - Installation/maintenance
- Component solutions
 - Construction
 - Miniaturization
 - Efficiency & reliability
- Applications
 - RRU/AAU: sub 6GHz mmWave
 - Power amplifier
 - BBU/DU/CU
 - MEC
- Murata innovation
 - RF components
 - mmWave modules
 - Substrates
 - Connectors
 - EMI
 - Capacitors
 - Power inductors
 - Power
 - Batteries
 - Sensors

Application guide 5G - base station
© Murata Manufacturing Co. Ltd. Ref. K72E Nov 01 2021 25
mmWave modules

AiM: Antenna integrated Module (4x4 array antenna)

Key features
- High output power
- Low Rx noise
- Multiple AiMs can be combined to increase output power

Murata 4x4 AiM

4x2channel beamformer IC

Up/down
converter

Control I/F (SPI)

IF(H-pol)

Local (f local /4)

IF(V-pol)

Pass band 26.5~29.5GHz
IL <2.0dB
Attenuation
>20dB@24GHz
>25dB@2HD Freq.

RFICs by:

• RRU/AAU mmWave

Array config.	Tx	Rx	Control I/F
4x4 AiM | 4x4 EIRP | Gain | EVM | Pdiss | NF | Gain | Rx SP3 | Pdiss | SPI
--- | --- | --- | --- | --- | --- | --- | --- | --- | ---
4x4 module | Up to 256array | 38dBm@CP-OFDM | >40 dB | <2.7dB | (4.4%) | <240mW | <4.5 dB | >24 dB | >27 dBm | <50mW | SPI

Contents
Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBI/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors
mmWave modules
5G mmWave beamformer IC

pSemi and Murata have co-designed a mmWave 5G antenna-integrated module (AiM) that incorporates multi-channel, beamforming front-end RFICs by pSemi, offering high-efficiency transmitters and low-noise receivers for advanced mmWave products.

Key features
• Integrated power amplifiers and low-noise amplifiers
• Supports four dual-polarity antennas
• 500 impedance at RF ports
• 6-bit phase and 6-bit attenuation control
• Linear POUT +11 dBm with CP-OFDM 64 QAM
• Fast beam switching
• On-chip memory for 512 beams
• Independent control via SPI of all paths

For some customers, pSemi products have a different sales channel from Murata Sales. Please confirm with sales@psemi.com

Find out more
mmWave modules
5G mmWave up-down converter IC

pSemi and Murata have co-designed a mmWave 5G antenna-integrated module (AiM) that incorporates multi-channel, beamforming front-end and up-down converter RFICs by pSemi, offering high-efficiency transmitters and low-noise receivers for advanced mmWave products.

Key features
• Compatible with PE188100/200 8-channel beamforming front end
• Fast TDD switching in <400 ns
• Separate V and H channels use a single X4 LO multiplier
• Image reject up- and down-converters with I/Q balance adjustment
• IF I/Q phase and amplitude adjustment
• LO I/Q phase adjustment
• TX OP1dB = +15 dBm, RX IIP3 = +8 dBm, RX NF = 5.0 dB
• Independent control via SPI of all paths

Applications
• RRU/AAU mmWave

For some customers, pSemi products have a different sales channel from Murata Sales. Please confirm with sales@psemi.com

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Frequency</th>
<th>Up Conversion</th>
<th>Down Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE128300</td>
<td>n257 & n258 up-down converter</td>
<td>24.25 – 29.5 GHz</td>
<td>17 dBm, 7 dBm, 1.5 W</td>
<td>4 dB, 8 dBm, 1.1 W</td>
</tr>
</tbody>
</table>

Related products:
- 4x4 array antenna module
- mmWave Beamformer IC
- mmWave up-down converter IC
- mmWave SPDT switch

Find out more
mmWave modules
5G mmWave SPDT switch

PE42525/PE426525 deliver excellent high frequency RF performance accompanied by high reliability of SOI in a monolithic solution.

These products also support a wide frequency band range up to 60GHz and deliver low insertion loss, fast switching time and high isolation performance.

Key features
- Low Insertion Loss
 - 1.7dB @ 45 GHz
 - 2.7dB @ 60 GHz
- Fast switching time of 3 ns
- High isolation
 - 38 dB @ 45 GHz
 - 36 dB @ 60 GHz
- High linearity
 - 48dBm IIP3

RF SOI switches from 9-60 GHz at operating temperatures from -55°C to +125°C

Applications
- RRU/AAU mmWave

For some customers, pSemi products have a different sales channel from Murata Sales. Please confirm with sales@psemi.com

mmWave modules
- 4x4 array antenna module
- mmWave Beamformer IC
- mmWave up-down converter IC
- mmWave SPDT switch

Find out more
Substrates

Metrocirc

MetroCirc™ is a thinner multilayer resin substrate comprising LCP (liquid crystal polymer) sheets.

It is characterized by exceptional RF characteristics, low water absorption, and the ability to handle a flexible bending process because it does not require an adhesive layer, and high multiple layers are possible by using Murata’s multilayer technology.

It is possible to design circuits by inserting copper foil sheets between LCP sheets, and these circuits are used as transmission wires, coils, and other functional components in base stations, contributing to smaller, thinner, and higher performance devices.

MetroCirc™ is ideal for use in substrates for millimeter wave modules, millimeter wave transmission lines, and other applications that utilize the low transmission loss properties at high frequencies that is a feature of MetroCirc™.

Applications

• RRU/AAU mmWave
• RRU/AAU
• PA

This folded substrate can be used to create 5G mmWave modules that provide wider antenna coverage.

This also reduces the number of heat generators.
Connectors
Microwave coaxial switch connectors and test probes

Microwave coaxial switch connectors are very useful for electrical characteristics measurement of microwave circuits in base stations.

The RF circuit and ANT characteristics can be measured by mounting in an RF transmission line.

The built-in mechanical switch separates the RF circuit and ANT circuit, so that the circuit can be measured without any mutual effect using a dedicated probe made by Murata. Except when measuring with probe, internal mechanical switch is connected, so the RF circuit and antenna circuit remain connected.

Manual probe with cable
Used for evaluation in the lab, this probe stands by itself after mating is completed, because it has claw at the contact point with connectors.

Automatic test probe
Used for inspection in mass production process, these probes are built into the measurement fixture, and pressed at connectors.

Murata can advise test fixture design and setting of probes on the measurement fixture.

Caution
The product shall not be used in any application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party’s life, body or property. You acknowledge and agree that, if you use our products in such applications, we will not be responsible for any failure to meet such requirements.

Applications
- RRU/AAU mmWave
- RRU/AAU
- PA

Applications
- RRU/AAU mmWave
- RRU/AAU
- PA

Connectors
- Coax switch connectors

Contents
- Overview
- 4G-5G progression
- Massive MIMO
- Beamforming
- Challenges
- Thermal
- Environmental
- Installation/maintenance
- Component solutions
- Construction
- Miniaturization
- Efficiency & reliability
- Applications
 - RRU/AAU: sub 6GHz, mmWave
 - Power amplifier
 - BBU/DU/CU
 - MEC
- Murata innovation
 - RF components
 - mmWave modules
 - Substrates
 - Connectors
 - EMI
 - Capacitors
 - Power inductors
 - Power
 - Batteries
 - Sensors
EMI filters
Ferrite beads

Key features
- Small size
- High performance
- Wide temperature range
- Extensive product range

Noise suppression has become an important issue, particularly with regard to electromagnetic interference (EMI) and electromagnetic compatibility (EMC).

Ferrite beads are Inductive EMI suppression filters that are effective from several MHz to several GHz. They can be widely used as general purpose noise suppression components. Inductive EMI filters work as inductors at low frequencies, but impedance caused by resistance increases at high frequencies. When inserted in series into the noise conduction path, this resistance component prevents and absorbs noise conduction.

Noise energy is changed into heat.

A wide range of package sizes and styles is available across a full range of impedance and current values.

See Murata chip ferrite beads

Applications
- RRU/AAU
- RRU/AAU mmWave
- BBU/DU/CU
- MEC

A type: for general type (low frequency signals) / BLM18AG601SN1
P type: for DC power line / BLM15BK601SN1
R type: for high distortion type (digital interfaces) / BLM18DK601SN1
B type: for high speed signals / BLM15DK601SN1
H type: for GHz noise suppressions / BLM15HG601SN1

Contents

Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors

© Murata Manufacturing Co. Ltd. Ref. K72E Nov 01 2021 32
Capacitors

High-Q (GQM/GJM series)

To help meet the demands of 5G applications, Murata offers a range of high-Q, high temperature capacitors in small package sizes.

Key features
- Higher Q value
- High temperature (up to 150°C)
- High voltage (up to 500V)
- Lower ESR = high current
- Internal Electrodes Cu
- Stable supply (by using internal base metal electrodes)

Applications
- RRU/AAU mmWave
- RRU/AAU
- PA

Capacitors
- **High-Q MLCC**
- Large capacitance MLCC
- Polymer Aluminum Caps
- Class1 (C0G) MLCC
- Silicon Capacitors
- RUSUB

Capacitor Data

<table>
<thead>
<tr>
<th>Capacitance range [pF]</th>
<th>1</th>
<th>2</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>GQM 1608M</td>
<td>0.2-15pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRM 1608M</td>
<td>0.1-33pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRM 1608M</td>
<td>0.15-30pF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Rated voltage [Vdc]</th>
<th>Size code [mm]</th>
<th>Capacitance range [pF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>125°C</td>
<td>100</td>
<td>0603</td>
<td>0.2-15pF</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1005</td>
<td>0.1-33pF</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1608-2012</td>
<td>0.15-30pF</td>
</tr>
<tr>
<td>150°C</td>
<td>100</td>
<td>0603</td>
<td>0.2-22pF</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1005</td>
<td>0.2-22pF</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1608-2012</td>
<td>0.1-30pF</td>
</tr>
</tbody>
</table>

© Murata Manufacturing Co. Ltd. Ref: K72E Nov 01 2021
Capacitors
MLCC

Murata has a range of large capacitance/125°C suitable for applications requiring a high-temperature warranty.

Using our unique technological capabilities, we will continue to extend this range to meet the growing need for higher temperatures.

Large capacitance + 125°C operation

Technology for realizing high capacity and high reliability
- Thinner dielectric layers
- Increased number of dielectric layers
- Improved efficiency of effective area (increased area)

$C = \varepsilon \times \varepsilon_0 \times S \times n \times t$

Capacitance formula

Fine-grained ceramics

Thinning of electrode and dielectric

Uniform dispersion

Applications
- RRU/AAU
- RRU/AAU mmWave
- BBU/DU/CU
- MEC

Capacitors
- High-Q MLCC
- Large capacitance MLCC
- Polymer Aluminum Caps
- Class1 (C0G) MLCC
- Silicon Capacitors
- RUSUB

Base station capacitor selection

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Q MLCC</td>
</tr>
<tr>
<td>Large capacitance MLCC</td>
</tr>
<tr>
<td>Polymer Aluminum Caps</td>
</tr>
<tr>
<td>Class1 (C0G) MLCC</td>
</tr>
<tr>
<td>Silicon Capacitors</td>
</tr>
<tr>
<td>RUSUB</td>
</tr>
</tbody>
</table>

Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors

Contents
Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz
mmWave
Power amplifier
BBU/DU/CU
MEC

Application guide 5G - base station
© Murata Manufacturing Co. Ltd. Ref: K72E Nov 01 2021
Capacitors

Large capacitance

By adding polymer Al cap (the ECAS series) to our line of multilayer ceramic capacitor (MLCC) products, we have further broadened the range of options available to customers.

As electronic devices gain ever-more-sophisticated functionality, stricter voltage control is needed for the power lines of the CPU, etc. Maintaining voltage line stability sometimes requires large capacitance. In the past we would have suggested using multiple MLCCs, but now in many cases we can propose combining ECAS series capacitors with MLCCs in order to reduce both the quantity and cost of components.

Polymer aluminum cap & >100µF MLCC

Comparison table

<table>
<thead>
<tr>
<th>Product type</th>
<th>MLCC</th>
<th>Polymer Al capacitor (PAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low ESR</td>
<td>★★</td>
<td>★★</td>
</tr>
<tr>
<td>Long-term reliability</td>
<td>★★</td>
<td>★★</td>
</tr>
<tr>
<td>Temperature characteristics</td>
<td>★★</td>
<td>★★</td>
</tr>
<tr>
<td>DC bias characteristics</td>
<td>★★</td>
<td>★★</td>
</tr>
<tr>
<td>Large capacitance</td>
<td>★★</td>
<td>★★</td>
</tr>
<tr>
<td>High voltage</td>
<td>★★</td>
<td>★★</td>
</tr>
<tr>
<td>Compact & thin</td>
<td>★★</td>
<td>★★</td>
</tr>
</tbody>
</table>

Over 100µF capacitor line-up

<table>
<thead>
<tr>
<th>Rated voltage [V]</th>
<th>Type</th>
<th>L x W (mm)</th>
<th>Capacitance value (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>MLCC</td>
<td>3.2 x 2.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PAC</td>
<td>3.2 x 4.3</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>470</td>
</tr>
<tr>
<td>4</td>
<td>MLCC</td>
<td>3.2 x 1.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 x 2.5</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 x 4.3</td>
<td>330</td>
</tr>
<tr>
<td>6.3</td>
<td>MLCC</td>
<td>3.2 x 1.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 x 2.5</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 x 4.3</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>PAC</td>
<td>7.3 x 4.3</td>
<td>470</td>
</tr>
</tbody>
</table>

Applications

- RRU/AAU
- RRU/AAU mmWave
- BBU/DU/CU
- MEC

Contents

Overview

4G-5G progression
Massive MIMO
Beamforming

Challenges

Thermal
Environmental
Installation/maintenance

Component solutions

Construction
Miniaturization
Efficiency & reliability

Applications

RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC

Murata innovation

RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors
Capacitors

Polymer Aluminum Capacitor (PAC)

Key features
- Higher capacitance than MLCC
- No acoustic noise
- Resistant to substrate bending and mechanical stress
- Capacitance stability against DC-bias, temperature
- Open mode failure

Applications
- RRU/AAU
- RRU/AAU mmWave
- BBU/DU/CU
- MEC

Capacitor Selection

<table>
<thead>
<tr>
<th>Rated voltage [Vdc]</th>
<th>15</th>
<th>22</th>
<th>33</th>
<th>47</th>
<th>68</th>
<th>100</th>
<th>150</th>
<th>220</th>
<th>330</th>
<th>470</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 G6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 G0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D4</td>
<td>D4</td>
<td>D4</td>
<td>D6</td>
<td></td>
</tr>
<tr>
<td>10 IA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D3</td>
<td>D4</td>
<td>D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 IC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D3</td>
<td>D4</td>
<td>D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 J0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D3</td>
<td>D4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 LE</td>
<td>D3</td>
<td>D3</td>
<td>D3</td>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitance value [pF]</th>
<th>150°C</th>
<th>125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°1)</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>(°2)</td>
<td>4.5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESR (mΩ)</th>
<th>105°C</th>
<th>125°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°1)</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>(°2)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Case dimensions: mm (inch)

<table>
<thead>
<tr>
<th>Size code</th>
<th>L</th>
<th>W (inch)</th>
<th>T (max.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>7.9 x 0.3 (0.31 x 0.012)</td>
<td>1.5 (0.059)</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>4.3 x 0.2 (0.17 x 0.008)</td>
<td>2.0 (0.079)</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>3.1 (0.122)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications
- RRU/AAU
- RRU/AAU mmWave
- BBU/DU/CU
- MEC

Capacitors
- High-Q MLCC
- High capacitance MLCC
- Polymer Aluminum Caps
- Class 1 (C0G) MLCC
- Silicon Capacitors
- RUSUB
Capacitors
MLCC

Since base station antennas consume considerable power, the key to power design is how to design a highly efficient power supply. Among them, the power source of LLC resonance system attracts attention.

Key features
• No change in capacitance due to temperature or voltage
• Small case size
• Large capacitance allows for reduction in the number of MLCCs

Class1(COG)/large capacitance

For other applications....
Loop filter for PLL frequency synthesizer IC

To optimize the PLL loop bandwidth, the optimum design of the loop filter is required, but the loop band is changed by the capacitance change of the loop filter capacitor.

Applications
• RRU
• RRU mmWave
• BBU/DU/CU
• MEC

Contents
Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors

<table>
<thead>
<tr>
<th>Length [mm]</th>
<th>Width [mm]</th>
<th>Rated voltage [V]</th>
<th>Capacitance range [pF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>1.6</td>
<td>25</td>
<td>0.001uF</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8</td>
<td>50</td>
<td>0.001uF</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>1.6</td>
<td>0.001uF</td>
</tr>
<tr>
<td>3.2</td>
<td>1.6</td>
<td>6.30</td>
<td>0.001uF</td>
</tr>
<tr>
<td>1.6</td>
<td>2.5</td>
<td>2.5</td>
<td>0.001uF</td>
</tr>
<tr>
<td>1.6</td>
<td>1K</td>
<td></td>
<td>0.001uF</td>
</tr>
</tbody>
</table>
Capacitors
Silicon capacitors (Si-Cap)

Key features
- Small size
- High voltage - up to 450V
- Operation up to 250°C
- High frequency - up to 110GHz

To realise smaller package sizes and higher capacitance, Murata Si-Caps feature deep trenches and tripod pillars to provide 100 times more electrode surface area than a planar structure. In addition, a temperature compensating material is used as the dielectric of the Si-Cap, maintaining capacitance even in actual usage conditions, enabling maximum capacitance density in small and vertical capacitors.

Application for base station RFPA

Signal-frequency broadband expansion and issues associated with 5G high-speed large capacity communications

When a broadband signal is output at a high power, an Inter Modulation Distortion (IMD) is generated in the Power Amplifier Module (PAM), reducing signal integrity. IMD frequency is a proportional function of the bandwidth, and the affected frequencies in Second-Order IMD are up to 400 MHz with Sub 6 GHz or several GHz with mmWave.

This method uses a small Si-Cap that maintains a high capacity under actual usage conditions, enabling the removal of the IMD in the limited space inside the PAM.

The Si-Cap solution

The low frequency band of IMD can be removed using a bias circuit connected to an FET drain. However, the high frequency band of IMD is difficult to remove outside of the PAM due to the influence of the microstrip line for RF-Blocking. In the method described here, the silicon capacitor (Si-Cap) is installed directly onto the metal substrates of the PAM, and the FET and Si-Cap are connected by a wire.

Installation image

3D structure proves 100x more electrode surface area

PAM circuit with Si-Cap solution

See Murata silicon capacitors
Capacitors
Thin film circuit substrates (RUSUB)

Key features
- High Q and high dielectric constant materials.
- Gold electrodes for wire bonding with gold wire.
- Customized CR composite products with high dielectric Single Layer Capacitor (SLC) and thin film resistor.

Under improvement for GaN FET
- High current: Increasing bonding wire diameter from 25µm to 50µm.
- High DC rated voltage: Increasing rated DC voltage from 100V to 200V.
- High Q factor: Increasing Q factor from 100 (@1MHz) to 1000 (@1MHz).

Internal matching power GaN/GaAs FET for base stations

- Possible to mount both GaN chip and RUSUB (customizable substrate) into the same package.
- Short sample lead time: 2-4 weeks.
- Website design tools provide key data for 18 standard sample types (1.0 pF to 90 pF) including dimensions, capacitance and S-parameters.

Applications
- PA

Find out more
Power inductors

Metal alloy, chip-coil & molded metal inductors

Key features
• Small size
• High performance
• Wide temperature range
• Extensive product range

Murata’s inductors are optimally designed (making full use of multiple construction techniques such as multilayer, film, and wire wound) to meet the requirements of the application, while also achieving size reductions and increased performance.

A wide range of package sizes and styles is available across a full range of inductance and current values.

Inductors for power supply circuits pose challenges that require improving multiple aspects of the product simultaneously. These aspects include high-current capability, DC superimposition characteristics, and miniaturization. To better meet these challenges, Murata has prepared a lineup of inductors that incorporate metal alloy materials in addition to the ferrite materials used up to now.

Applications
• BBU/DU/CU
• RRU/AAU mmWave
• RRU/AAU
• MEC

See all Murata inductors
World’s highest efficiency & smallest PSiP

143mm² solution size

(package size: 9 x 10.5 x 2.1 mm)

This converter enables a power solution in only 143mm² including two external output capacitors only (no external input capacitors required).

Low profile

Low profile construction enables better performance at higher temperatures

143mm² solution size

This converter enables a power solution in only 143mm² including two external output capacitors only (no external input capacitors required).

Excellent thermal derating

Low profile construction enables better performance at higher temperatures

Part Number	Input voltage	Output voltage	Io max	PSW	Telemetry	Peak efficiency	Solution size	MP	Package size
MYTH6A1R86RELAX1A | 6.0-14.4V | 0.7-1.8V | 4 | 1 | N/A | 87% | 143 | Available | 9 x 10.5 x 2.1 LGA
MYTH6A1R86RELAX1B | 7.0-14.4V | 0.7-1.8V | 4 | 1 | N/A | 87.3% | 143 | Available | 9 x 10.5 x 2.1 LGA
MYTH6A1R84RELAX1A | 6.0-14.4V | 0.7-1.8V | 4 | 1 | N/A | 88% | QF22 | 12.1 x 11.6 x 2.1 LGA
MYTH6A1R84RELAX1B | 7.0-14.4V | 0.7-1.8V | 4 | 1 | N/A | 87% | 143 | Available | 9 x 10.5 x 2.1 LGA
MYT06424 | 9.6-14.4V | 0.7-1.8V | 4x4 | 1 | N/A | 86% | TRD | QF22 | 12.1 x 11.6 x 2.1 LGA

Applications

• BBU/DU/CU
• RRU/AAU mmWave
• RRU/AAU
• MEC

Power

UltraBK™ PoL DC-DC
UltraCP™, FlexiCP™ DC-DC
Isolated high power DC-DC
Front-end power
Power shelf

Low EMI

Conducted noise

Radiated noise

Measurement conditions: Vin: 12V, Vout: 1V, Iso: 5A, Cin: 10uFx2 (MLCC), Cout: 100uFx2 (MLCC)
Power

UltraCP™, FlexiCP™

Ultra-high efficiency, integrated capacitor divider for intermediate bus conversion

The FlexiCP™ PE252xx series of ultra-high efficiency, capacitor divider products is based on Murata’s proprietary adiabatic - or lossless - charge pump technology.

The technology is ideally suited to providing ‘lossless’ step-down voltage conversion from 48V (PE25204) or 12V (PE25200) intermediate bus systems to support downstream Point-of-Load converters to enable highest system level efficiency.

The ICs are based on an interleaved charge pump control architecture with integrated FETs capable of delivering up to 72W of power. The devices can be connected in parallel for higher power system requirements and synchronized to eliminate noise issues. The divider products are available in IC form and in high density PSiP module form - UltraCP™ (MYCxx series) - for ease of use and placement in space constrained applications.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input voltage</th>
<th>Output voltage</th>
<th>Io max</th>
<th>Efficiency</th>
<th>MP</th>
<th>Package size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYC0300</td>
<td>8.2–15V (3s cell or 12V BUS)</td>
<td>Vin/3</td>
<td>10</td>
<td>96.5% at Peak, 96% at FL (12Vin/4Vo)</td>
<td>Q3,21</td>
<td>11.8 x 10.8 x 2.1 LGA</td>
</tr>
<tr>
<td>MYC0409</td>
<td>20–60V (48V BUS)</td>
<td>Vin/4</td>
<td>6</td>
<td>96.5% at Peak, 95% at FL (48Vin/12Vo)</td>
<td>Q3,21</td>
<td>11.5 x 9.5 x 2.1 LGA</td>
</tr>
<tr>
<td>PE25200</td>
<td>8.2–15V</td>
<td>Vin/3</td>
<td>10</td>
<td>97.5% at Peak, 97% at FL (12Vin/4Vo)</td>
<td>Q3,21</td>
<td>4.45 x 6.85 x 0.492 BGA</td>
</tr>
<tr>
<td>PE25204</td>
<td>18–45V</td>
<td>Vin/4</td>
<td>6</td>
<td>97.5% at Peak, 97% at FL (48Vin/12Vo)</td>
<td>Available</td>
<td>3.6 x 5.8 x 0.492 BGA</td>
</tr>
</tbody>
</table>

Applications

- RRU/AAU
- RRU/AAU mmWave
- BBU/DU/CU

Power

- UltraBK™ PoL DC-DC
- UltraCP™, FlexiCP™ DC-DC
- Isolated high power DC-DC
- Front-end power
- Power shelf

Search power semiconductors
Part Number Packaging

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Output power</th>
<th>Input voltage</th>
<th>Output power</th>
<th>Output current</th>
<th>Efficiency</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSE series</td>
<td>Eighth</td>
<td>300</td>
<td>36-75</td>
<td>3.3, 5, 12</td>
<td>40, 40, 25</td>
<td>95.5</td>
<td>58.4 x 22.9 x 13.2</td>
</tr>
<tr>
<td>DSE series</td>
<td>Eighth</td>
<td>400</td>
<td>36-75</td>
<td>12</td>
<td>33</td>
<td>95.5</td>
<td>58.4 x 22.9 x 14.0</td>
</tr>
<tr>
<td>DBQ series</td>
<td>Quarter</td>
<td>600</td>
<td>36-75</td>
<td>3.3, 5, 12</td>
<td>60, 60, 35</td>
<td>95.5</td>
<td>58.4 x 36.8 x 13.2</td>
</tr>
<tr>
<td>DSQ series</td>
<td>Quarter</td>
<td>420</td>
<td>36-75</td>
<td>12</td>
<td>50</td>
<td>95.5</td>
<td>58.4 x 36.8 x 13.2</td>
</tr>
<tr>
<td>UWS series</td>
<td>Sixteenth</td>
<td>54</td>
<td>9-36</td>
<td>3.3, 5, 12, 15, 24</td>
<td>15, 10, 4.5, 3.3, 2</td>
<td>91</td>
<td>33 x 22.9 x 9.1</td>
</tr>
<tr>
<td>UWS series</td>
<td>Eighth</td>
<td>120</td>
<td>9-36</td>
<td>5, 12, 15, 24</td>
<td>20, 24, 8, 5</td>
<td>92</td>
<td>58.4 x 22.9 x 13.2</td>
</tr>
<tr>
<td>UWE series</td>
<td>Eighth</td>
<td>600</td>
<td>9-18</td>
<td>12</td>
<td>24</td>
<td>94.5</td>
<td>58.4 x 22.9 x 13.2</td>
</tr>
<tr>
<td>UWE series</td>
<td>Eighth</td>
<td>120</td>
<td>18-75</td>
<td>12</td>
<td>48</td>
<td>92</td>
<td>58.4 x 22.9 x 13.2</td>
</tr>
</tbody>
</table>

Applications

Power
- UltraBK™ PoL DC-DC
- UltraCP™, FlexiCP™ DC-DC
- Isolated high power DC-DC
- Front-end power
- Power shelf

Search isolated DC-DCs
Power

Front-end power supplies

High efficiency
• 15 Titanium efficiency designs
• 800W - 2200W
• Industry standard form factors (54mm, 74mm, 86mm)

High power density
• Up to 78W/in³
• Common CRPS form factor
• 2,600W reached the highest density & efficiency in the industry

Modular and slim
• Compatible DC input (40-72Vdc) variants in same form factor as AC (90-264V)
• Configurable solutions to 30kW
• Multi input AC (90-277Vac or 380Vdc)

D1U54 Series – 2kW AC-DC
• Input 180 to 264Vac
• Output 12Vdc @ 166A
• Power 2000W
• Efficiency Platinum & Titanium
• Ride through 10ms (11ms at 75% load)
• Cooling Variable speed
• Redundant N+1, OR-ing FETs
• Density 74mmX185mmX1U
• Other PMBus Interface

2600W CRPS-185 AC-DC
• Input 180 to 264Vac
• Output 12Vdc @ 166A
• Power 2600W
• Efficiency Titanium
• Redundant N+1, OR-ing FETs
• Density 78W/in³
• Other PMBus Interface

D1U54T Short & Slim Series – 1200W AC-DC Titanium
• Input 180 to 264Vac
• Output 12Vdc
• Power 1200W
• Efficiency Titanium
• Ride through 20ms (at 50% load)
• Cooling Variable speed, exits at latch
• Redundant N+1, OR-ing FETs
• Operating temp 0°C to 50°C
• Density 39W/in³
• Mechanical 228.6mm(L) x 54.5mm(W) x 40.0mm(H)
• Other PMBus Interface

Applications
• BBU/DU/CU
• MEC

Search front-end power

Contents

Overview
• 4G-5G progression
• Massive MIMO
• Beamforming

Challenges
• Thermal
• Environmental
• Installation/maintenance

Component solutions
• Construction
• Miniaturization
• Efficiency & reliability

Applications
• RRU/AAU: sub 6GHz mmWave
• Power amplifier
• BBU/DU/CU
• MEC

Murata innovation
• RF components
• mmWave modules
• Substrates
• Connectors
• EMI
• Capacitors
• Power inductors
• Power
• Batteries
• Sensors

Application guide 5G - base station

© Murata Manufacturing Co. Ltd. Ref. K72E Nov 01 2021 44
Power

Power shelf - Open Compute

Features
- Up to 15kW/16kW N+1 output power @ 12Vout
- Up to 18kW N+1 output power @ 54Vout
- 12.3V or 54V main output
- 12.2V AUX output
- PSU conversion efficiency higher than 96% at 50% of load (80 PLUS Titanium class)
- Available input configurations – Single phase AC, 3-Phase AC, HVDC

Components
- 12V and 54Vout, 21" 1OU Power Shelf
- 19”/21” 2RU Power Shelf
- 54V, 3.6kW Titanium Efficiency Power Supply 12V, 3kW - 3.2kW Titanium Efficiency Power Supplies
- ATS (Automated Transfer Switch) Modules
- RMU (Remote Management Unit)
- Battery Backup Solution

Applications
- Virtualized BBU/DU/CU
- MEC

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Height</th>
<th>Input configuration</th>
<th>Output power (W)</th>
<th>AC Outlets</th>
<th>Support BBU</th>
<th>Busbar connect</th>
<th>Applicable PSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWOCES-192-A</td>
<td>2U</td>
<td>3phase Delta</td>
<td>1.5kW (N-1)</td>
<td>6</td>
<td>Yes</td>
<td>Kit</td>
<td>MWOP074-3000-A-BF</td>
</tr>
<tr>
<td>MWOCES-211-B</td>
<td>10U</td>
<td>3phase Wye</td>
<td>1.5kW (N-1)</td>
<td>2</td>
<td>No</td>
<td>Direct</td>
<td>MWOP074-3000-A-BF</td>
</tr>
<tr>
<td>MWOCES-211-F</td>
<td>10U</td>
<td>3phase Wye</td>
<td>1.5kW (N-1)</td>
<td>2</td>
<td>No</td>
<td>Direct</td>
<td>MWOP074-3000-A-BF</td>
</tr>
<tr>
<td>MWOCES-211-G</td>
<td>10U</td>
<td>3phase Wye</td>
<td>1.5kW (N-1)</td>
<td>2</td>
<td>Yes</td>
<td>Kit</td>
<td>MWOP074-3000-A-BF</td>
</tr>
<tr>
<td>MWOCES-191-C</td>
<td>1U</td>
<td>3phase Wye, Delta, Single phase</td>
<td>1.2kW (N-1)</td>
<td>2</td>
<td>Yes</td>
<td>Kit</td>
<td>MWOP074-3000-A-BF</td>
</tr>
<tr>
<td>MWOCES-191-D</td>
<td>1U</td>
<td>HVDC</td>
<td>1.2kW (N-1)</td>
<td>0</td>
<td>Yes</td>
<td>Kit</td>
<td>MWOP074-3000-A-BF</td>
</tr>
</tbody>
</table>

See Murata Open Compute

© Murata Manufacturing Co. Ltd. Ref: K72E Nov 01 2021
Batteries

Battery shelf

Features (shelf)
- Fits into the 21” OCP open rack standard
- Up to 16kW total power per shelf (4 BBUs)
- Battery Shelf (600×537×87 mm)
- Four battery slots; each BBU provides 12Vdc, 4kW (max.)
- One battery control unit for management of BBUs
- Communicates with Murata Power Shelf (see page 38)
- Three battery shelves can be connected in parallel

Features (BBU)
- 4kW maximum output power
- 12V input and output voltage
- 120 seconds hold up time
- Adjustable charging power
- Active current sharing on 12V output
- ORing FET isolation
- Hot swap available
- Overvoltage, overcurrent, over temperature protection and reporting

Murata’s battery backup solution is lighter and smaller than traditional lead acid batteries, improving your business in terms of maintenance, OPEX and total cost of ownership.

Murata offers 21” OCP and EIA 19” rack mountable battery backup solutions to support high reliability architectures.

We utilize Murata’s best in class Lithium Ion battery cell technology for our BBU (Battery Backup Unit). With a compact form factor, each BBU is capable of supplying 4kW for up to two minutes. The 21” OCP Battery Backup Shelf (BBS) has 4 slots for BBUs and can supply up to 16kW for two minutes in the event of an AC power loss.

The BCU (Battery Control Unit) in the shelf communicates with each BBU and the power shelf to implement intelligent power system control via our Remote Management Unit (RMU).

Applications
- Virtualized BBU/DU/CU
- MEC

Murata innovation
- RF components
- mmWave modules
- Substrates
- Connectors
- EMI
- Capacitors
- Power inductors
- Power
- Batteries
- Sensors

Contents
Overview
- 4G-5G progression
- Massive MIMO
- Beamforming
Challenges
- Thermal
- Environmental
- Installation/maintenance
Component solutions
- Construction
- Miniaturization
- Efficiency & reliability
Applications
- RRU/AAU: sub 6GHz mmWave
- Power amplifier
- BBU/DU/CU
- MEC

See all Murata batteries

Find out more
Sensors
SMD thermistor

Key features
• SMD type (reflow OK)
• 10kΩ, 47kΩ, 100kΩ resistance
• 1005mm (0402inch) or 1608mm (0603inch)
• -40°C to 125°C/150°C operating temperature

Use case
• Temperature sensing and compensation in 5G antenna systems
• Alarm
• Fan start/stop
• Over-temperature cutout

Sensors
Lead-type thermistor

Key features
• 3kΩ, 10kΩ, 47kΩ, 100kΩ resistance
• Small head sensing element (1.2mm)
• Assembled our chip thermistor with flexible lead
• -40°C to 125°C/150°C operating temperature

Why Murata?
As the world’s No.1 manufacturer of PTC and NTC thermistors, Murata consistently meets the market’s expectations for high quality, best value, top-class service and reliable delivery.

Applications
• BBU/DU/CU
• RRU/AAU mmWave
• RRU/AAU
• PA
• MEC

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Resistance & B-Constant</th>
<th>Size</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCU15 series</td>
<td>Resistance (25°C) 10kΩ / 47kΩ / 100kΩ</td>
<td>1.0 ±0.5mm</td>
<td>0.4 x0.2inch SMD</td>
</tr>
<tr>
<td>B-Constant</td>
<td>(25/50°C) 4050kΩ / 4250kΩ</td>
<td>1.0 ±0.5mm</td>
<td>0.4 x0.2inch SMD</td>
</tr>
<tr>
<td></td>
<td>(25/85°C) 4305kΩ / 4311kΩ</td>
<td>1.0 ±0.5mm</td>
<td>0.4 x0.2inch SMD</td>
</tr>
<tr>
<td>NCU18 series</td>
<td>Resistance (25°C) 10kΩ / 47kΩ / 100kΩ</td>
<td>1.6 ±0.8mm</td>
<td>0.6 x0.3inch SMD</td>
</tr>
<tr>
<td>B-Constant</td>
<td>(25/50°C) 4050kΩ / 4250kΩ</td>
<td>1.6 ±0.8mm</td>
<td>0.6 x0.3inch SMD</td>
</tr>
<tr>
<td></td>
<td>(25/85°C) 4305kΩ / 4311kΩ</td>
<td>1.6 ±0.8mm</td>
<td>0.6 x0.3inch SMD</td>
</tr>
<tr>
<td>NOFT series</td>
<td>Resistance (25°C) 10kΩ / 47kΩ / 100kΩ</td>
<td>1.2 x 1.2mm x various lead lengths</td>
<td>Lead</td>
</tr>
<tr>
<td>B-Constant</td>
<td>(25/50°C) 4050kΩ / 4250kΩ</td>
<td>1.2 x 1.2mm x various lead lengths</td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>(25/85°C) 4305kΩ / 4311kΩ</td>
<td>1.2 x 1.2mm x various lead lengths</td>
<td>Lead</td>
</tr>
</tbody>
</table>

PTC type for overheat sensing
NTC type for temperature sensing and compensation

Contents
Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors

See all Murata thermistors
Sensors

MEMS inclinometers

Active stabilization systems for 5G antennas
The purpose of stabilization is to ensure signal strength & link stability in backhaul high frequency links (>40GHz) by compensating for antenna tilt/sway due to:
• Wind
• Temperature deformations of antenna tower
• Other environmental disturbance

Inclinometers can be used to detect the environment-induced tilt and sway.
After enabling the accurate measurement of abnormal motion, this motion can be compensated for by the use of:
• Beam steering
• Mechanical antenna control

In stable conditions a strong signal can be achieved.
Tilt and sway reduces signal strength for mmWave backhaul

Features
• low noise, making detection of smallest movements possible
• stability over time, minimizing the need for calibration in field
• stability over temperature, maintaining the accuracy in all conditions
• automotive grade reliability

MEMS inclinometers can be used for accurate measurement and correction of cell tower tilt/sway, increasing accuracy and reducing maintenance.

Part Number Axis Measurement mode option Maximum range Amplitude response Offset temperature characteristic Operating temperature Output type
SCL3300-D01 3 1 ±1.8g/±90° 40Hz ±0.005°C/°C −40°C to +125°C Digital SPI
2 ±3.6g/±90° 70Hz
3, 4 Inclination mode/±10° 10Hz

Applications

• RRU/AAU mmWave

See all Murata sensors

Contents

Overview
4G-5G progression
Massive MIMO
Beamforming
Challenges
Thermal
Environmental
Installation/maintenance
Component solutions
Construction
Miniaturization
Efficiency & reliability
Applications
RRU/AAU: sub 6GHz mmWave
Power amplifier
BBU/DU/CU
MEC
Murata innovation
RF components
mmWave modules
Substrates
Connectors
EMI
Capacitors
Power inductors
Power
Batteries
Sensors

Find out more

© Murata Manufacturing Co. Ltd. Ref. K72E Nov 01 2021 48