

D1U4CS-D Communication Protocol

D1U4CS-D-2100-xx-HA3xC Application Note

PMBus Commands

Standard PMBus Commands

All data passed over the PMBus interface uses PEC per the PMBus specification v 1.1 definition. DIRECT data formatting is used for all passed parameters. The m, b, and R coefficients may be obtained from the Data Format table at the end of this application note. It is strongly recommended to make full use of the PEC byte to validate all transactions and repeat if not validated. Block reads (whereby the loose byte received denotes the remaining bytes to be clocked out) are not supported on this 2100W D1U power supply. A minimum 100 µsec delay between transactions (between START and STOP bits) is recommended for robust PMBus communications.

Command Code	Command Name	Transaction Type	Number of data bytes	Comment
0x01	OPERATION	Write	1	Turns on/off power supply. Command argument determines ON/OFF
0x03	CLEAR_FAULTS	Write	0	Clears fault data
0x3A	FAN_CONFIG_1_2	Read	1	
0x3B	FAN_COMMAND_1*	Write	2	Speed set in duty cycle. Value of $1024 = 100\%$ duty cycle. Value of $0 = 0\%$ duty cycle. Minimum fan speed overridden by internal safety concerns.
0x3C	FAN_COMMAND_2*	Write	2	Speed set in duty cycle. Value of $1024 = 100\%$ duty cycle. Value of $0 = 0\%$ duty cycle. Minimum fan speed overridden by internal safety concerns.
0x74	TEST_OUTPUT_ORING	Write	1	Tests output ORing. Use only bit 0 (Lsb). If it's set to 1, test ORING in progress or if it 0, test is complete.
0x80	LINE_RANGE	Read	1	0x00 = Low Line Mode. 0x01 = High Line Mode.
0x88	READ_VIN	Read	2	Read input voltage
0x89	READ_IIN	Read	2	Read input current
0x8B	READ_VOUT	Read	2	Read output voltage
0x8C	READ_IOUT	Read	2	Read output current
0x8D	READ_TEMPERATURE_1	Read	2	Read outlet temperature
0x8E	READ_TEMPERATURE_2	Read	2	Read inlet temperature
0x8F	READ_TEMPERATURE_3	Read	2	Read heatsink temperature (transformer)
0x90	READ_FAN SPEED_1	Read	2	Read RPM Fan 1
0x91	READ_FAN SPEED_2	Read	2	Read RPM Fan 2
0x96	READ_POUT	Read	2	Read Output Power
0x97	READ_PIN	Read	2	Read Input Power
0x98	PMBUS_REVISION	Read	1	Read PMBus revision

* FAN_COMMAND_2 is identical to FAN_COMMAND_1. When the user issues these commands together, the actual fan speed change is made based on the values in last command. Each command changes the speed of both fans; the fan speeds cannot be independently controlled.

Non-standard PMBus commands

The following custom commands may also be used in addition to the supported standard commands. When reading data using the custom commands, the <u>byte order</u> is least significant byte first, most significant byte last. The <u>bit order</u> is most significant bit first, least significant bit last. A minimum 100 µsec delay between transactions (between START and STOP bits) is recommended for robust communications.

Command Code	Command Name	Transaction Type	Number of data bytes	Comment
0xE0	CONTROL_LEDS	Read/Write	1	Turn ON/OFF individual or all LEDs. The argument should specify any or all 3 LEDs
0xE1	EEPROM_WRITE_ENABLE	Read/Write	1	Controls EEPROM write protect
0xE2	READ_FIRMWARE_REVISION	Read	6	Read vendor specific firmware revision.
0xE3	READ_HOURS_USED	Read	3	Read hours used in 1 hour per bit resolution
0xE4	READ_STATUS_DATA	Read	19	Read all status data, details in following table
0xE5	READ_FAULT_DATA	Read	3	Read all fault/warning data, details in following table
0xE6	FAULT_DATA_WRITE_ENABLE	Read/Write	1	Enables fault simulation

D1U4CS-D-2100-xx-HA3xC Application Note

Non-standard PMBus commands (continued)

0xE0: CONTROL_LEDS

bit	Description
7	unused
6	unused
5	LED fault override, $1 = host control$, $0 = self control$
4	LED fault, $1 = on, 0 = Off$, if bit $5 = 1$
3	LED out override, $1 = host control$, $0 = self control$
2	LED out, $1 = \text{on}$, $0 = \text{Off}$, if bit $3 = 1$
1	LED in override, $1 = host control$, $0 = self control$
0	LED in, $1 = on$, $0 = Off$, if bit $1 = 1$

Above mechanism requires each power supply to check only the override bit before possibly changing the LED state, 2 checks per LED.

0xE1: EEPROM_WRITE_ENABLE

- Data byte = 0 will disable EEPROM writes
- Data byte = 1 will enable EEPROM writes
- All other data will be ignored

0xE2: READ_FIRMWARE_REVISION

This command will read out six bytes of data, indicating internal firmware revision. (The first two bytes are the Primary microcontroller Version/Revision. The next two bytes are the Floating Microcontroller Version/Revision.) This command does not support block read; user must clock out six bytes. The primary firmware bytes are reserved and will read 0x00, 0x00 for the D1U4CS-D-2100-xx-HA3xC product.

Example: 0x00, 0x00, 0x01, 0x02, 0x01, 0x02 (Primary reserved; floating ver. 1 rev. 2; secondary ver. 1 rev. 2)

0xE3: READ_HOURS_USED

The HOURS_USED is stored with 1 hour/bit resolution in non-volatile memory. First byte returned from the power supply is the MSB, followed by the middle byte, last by the LSB. This command does not support block reads.

0xE4: READ_STATUS_DATA

The Read_Status_Data commands return 19 bytes of data which represent the current PSM status. The PMBus Direct sensors use the m, b, and R coefficients as specified below (see the Data Format section for more details). The HOURS_USED sensor is an unsigned 24-bit valve with 1 hour/bit resolution, which is stored in non-volatile memory.

Description	Format	Byte	Weight		Bit Format							М	В	R
DIN	PMBus Direct	0	LSB	D7	D6	D5	D4	D3	D2	D1	DO	2654	0	4
PIN	(10-bit unsigned)	1	MSB	0	0	0	0	0	0	D9	D8	3034	0	-4
DOUT	PMBus Direct	2	LSB	D7	D6	D5	D4	D3	D2	D1	D0	2654	0	Α
FUUT	(10-bit unsigned)	3	MSB	0	0	0	0	0	0	D9	D8	3034	0	-4
VIN	PMBus Direct	4	LSB	D7	D6	D5	D4	D3	D2	D1	DO	10700	0	2
VIIN	(10-bit unsigned)	5	MSB	0	0	0	0	0	0	D9	D8	12/00	0	-3
IINI	PMBus Direct	6	LSB	D7	D6	D5	D4	D3	D2	D1	D0	14614	0	2
IIIN	(10-bit unsigned)	7	MSB	0	0	0	0	0	0	D9	D8	14014	0	-3
TEMPERATURE_2	PMBus Direct	8	LSB	D7	D6	D5	D4	D3	D2	D1	D0	639 6394	6204	2
(inlet)	(10-bit unsigned)	9	MSB	0	0	0	0	0	0	D9	D8		-2	
TEMPERATURE_1	PMBus Direct	10	LSB	D7	D6	D5	D4	D3	D2	D1	DO	620	6204	0
(outlet)	(10-bit unsigned)	11	MSB	0	0	0	0	0	0	D9	D8	039	0394	-2
VOUT	PMBus Direct	12	LSB	D7	D6	D5	D4	D3	D2	D1	DO	02	D1	DO
VUUT	(10-bit unsigned)	13	MSB	0	0	0	0	0	0	D9	D8	UZ	DI	DU
	PMBus Direct	14	LSB	D7	D6	D5	D4	D3	D2	D1	D0	DO	D.	DO
(10-bit unsigned)	15	MSB	0	0	0	0	0	0	D9	D8	UZ	DI	DU	
	DMD	16	LSB	H7	H6	H5	H4	H3	H2	H1	HO	H2	H1	HO
HOURS_USED	PMBus Direct (24-bit unsigned)	17		H15	H14	H13	H12	H11	H10	H9	H8			
		18	MSB	H23	H22	H21	H20	H19	H18	H17	H16			

D1U4CS-D Communication Protocol

D1U4CS-D-2100-xx-HA3xC Application Note

Non-standard PMBus commands (continued)

0xE5: READ_FAULT_DATA

Faults are represented by 3 Bytes. Below are the bit definitions of each of the 3 bytes. An interrupt will be generated when a bit changes. The interrupt will be cleared after the fault data has been read. (This includes the PEC byte with the 0xE5 read.)

The following table shows the bit values for the different fault conditions. Note that the fault values are latched until they are cleared by 0x03 CLEAR FAULTS command for all supported faults.

Byte	Bit	Function	Bit state	Fault detection criteria	Input OK LED	Output OK LED	Fault LED	Fault Sig	INT _X Sig.
0	7	Reserved							
0	6	Reserved							
0	5	Reserved							
0	4	Reserved							
0	3	Reserved							
0	2	DEC orror	0 2	CLEAR_FAULTS written with correct PEC byte	n/c	n/c	n/c	Н	Н
0	2	FLG EITUI	1	Invalid PEC byte written	n/c	n/c	n/c	Н	L
0	1	Vout out of range	0 ②	Conversion active, internal Vout ≥ 48.95 and ≤ 56.23	n/c	ON	0FF	Н	L
0	1	vout out of range	1	Conversion active, internal Vout outside above range	n/c	ON	ON	L	L
_	0		0 2	$Vin \ge 72.6 \text{ AND} \le 43.5$	ON	ON	n/c	Н	Н
0	0	vin out of range	1	$Vin \geq 75.0 \text{ OR} \leq 38.5$	BLINK	0FF	n/c	Н	L
-	7	Devues lissified	0 2	PSU in normal mode, no OCP hiccup	n/c	n/c	n/c	Н	Н
	1	Power Infilied	1	Main output in overcurrent hiccup mode ${\rm \textcircled{O}}$	n/c	BLINK ①	n/c	Н	L①
	0	The survey large start for sthe	0 ②	No shorted thermal sensor detected	n/c	n/c	0FF	Н	Н
	6	i nermai sensor tault	1	One or more thermal sensors shorted	n/c	n/c	ON	L	L
	-	Fault induced	0 ②	PSU in normal mode	n/c	ON	0FF	Н	Н
1	5	shutdown	1	Unknown failure / OR-ing failure / 52V-to-5V short	n/c	OFF	ON	L	L
			0 ②	Inlet temperature ≤ 55°C	n/c	ON	0FF	Н	Н
1	4	Input stage 01 (3)	1	Inlet temperature $\geq 65^{\circ}$ C for > 5 sec	n/c OFF	ON	L	L	
			0 ②	External Vout < 57.6	n/c	ON	0FF	Н	Н
1	3	UV snutdown	1	External Vout > 58	n/c	OFF	ON	L	L
	_		0 2	Xfmr \leq 115°C AND Outlet \leq 80°C AND Inlet \leq 55°C	n/c	n/c	n/c	Н	Н
1	2	01 warning	1	Xfmr \ge 120°C OR Outlet \ge 85°C OR Inlet \ge 65°C	n/c	n/c	n/c	Н	L
			0 ②	[Input Stage OT] = 0 AND [Output Stage OT] = 0	n/c	ON	0FF	Н	Н
1	1	OT Shutdown	1	[Input Stage OT] = 1 OR [Output Stage OT] = 0	n/c	OFF	ON	L	L
	_		0 ②	No OC shutdown , no output in OC	n/c	ON	0FF	Н	Н
1	0 OC shutdown		1	Main output OC shutdown ④ OR Standby in OC	n/c	0FF ④	ON ④	L ④	L ④
			0 ②	TEST OUTPUT ORING (0x74) test passed	n/c	n/c	ON	Н	Н
2	7	OR-ing fault	1	TEST OUTPUT ORING (0x74) test failed	n/c	n/c	OFF	L	L
2	6	Output power bad (Reserved)		,					
	_		0 ②	Input voltage \ge 30 AND internal bias voltage \ge 10.6	ON	n/c	n/c	Н	Н
2	5	No input detected	1	Input voltage < 30 AND internal bias voltage < 7	0FF	n/c	n/c	Н	L
2	4	LED test fault (Reserved)							
		F ())	0 ②	Fans $>$ 3 kRPM for $>$ 1 sec, tachs and power OK	n/c	n/c	ON	Н	Н
2	3	Fan fault	1	Any fan $<$ 3 kRPM OR (Bad tach/PWM/power)	n/c	n/c	0FF	L	L
_	_		0 ②	OUT_ENABLE_L pin is L	n/c	ON	n/c	Н	Н
2	2	Output enable pin HI	1	OUT_ENABLE_L pin is H	n/c	OFF	n/c	Н	L
_			0 ②	$X fmr \le 85^{\circ}C \text{ AND } OR-ing \le 115^{\circ}C$	n/c	ON	OFF	Н	Н
2	1	Output stage OT	1	$X fmr \ge 125^{\circ}C \text{ OR OR-ing} \ge 125^{\circ}C$	n/c	OFF	ON	L	L
	_		0 ②	Internal Vstandby ≥ 4.9 AND ≤ 5.5	n/c	n/c	0FF	Н	Н
2	2 0	5V out of range	1	Internal Vstandby ≤ 5.65 OR ≥ 4.8 ③	n/c	n/c	ON	L	L

D1U4CS-D Communication Protocol

D1U4CS-D-2100-xx-HA3xC Application Note

Non-standard PMBus commands (continued)

0xE5: READ_FAULT_DATA (continued)

Notes							
n/c	No change						
INT _X	Currently active interrupt signal (function of the PCA)						
1	If the overload condition lasts > 30 hiccups, hiccupping mode and [Power limited = 1] are held for 30 hiccups, then [OC shutdown = 1] takes over						
2	Fault bits are sticky and will stay as 1 (even if conditions clear) until a CLEAR_FAULTS command is sent						
3	Standby OVP latches the output off; OCP is hiccup operation						
4	[OC shutdown = 1] occurs only after 30 hiccups and [Power limited = 1]						

0xE6: FAULT_DATA_WRITE_ENABLE

Writing a 0x00 as the command byte disables writes to FAULT_DATA (0xE5). Writing a 0x01 as the command byte enables writes to FAULT_DATA (0xE5) as a simulation tool.

Data Format

Following table represents recommended use of m, b and R values for different parameters. The parameter conventions are according to the PMBus standard specification:

 $X=\mbox{Calculated "real" world value in appropriate units like Volt, Amp or Celsius$

Y = Two-byte PMBus DIRECT integer value received from PMBus device

 $M = Slope \ coefficient$

B = Offset

R = Exponent PMBus DIRECT formula: $X = \frac{1}{M} (Y \cdot 10^{-R} - b)$

Command	Required Range	м	В	R	Minimum Value (X @ Y_min)	Maximum Value (X @ Y_max)	Value (X) resolution per bit		
READ_VIN READ_VOUT	0 to 80 V	12788	0	-3	0	79.997	0.0782		
READ_IIN READ_IOUT	0 to 70 A	14614	0	-3	0	70.001	0.0684		
READ_TEMPERATURE_1 READ_TEMPERATURE_2 READ_TEMPERATURE_3	-10 to 150 C	639	6394	-2	-10.006 150.088		0.1564		
READ_FAN_SPEED_1 READ_FAN_SPEED_2	AD_FAN_SPEED_1 0 to 22,000 RPM 4650 0		0	-5	0	22000	21.5		
READ_POUT READ_PIN	0 to 2799.672 W	3654	0	-4	0	2799.7	2.74		
FAN_COMMAND_1 FAN_COMMAND_2	0 to 100%	1023	0	-2	0	100	0.09775		

Murata Power Solutions, Inc.

11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: <u>http://www.murata-ps.com/requirements/</u>

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. © 2012 Murata Power Solutions, Inc.