

SILICON SUPPORT MAGNETICS

Compatibility Guide

The choice of Inductors for switching products is a critical path in any new design. Inductance values, current ratings, and DC Resistance values will alter for different applications. The mode of operation, load current, and input voltage will all impact inductor selection in some way. C&D Technologies (NCL)'s compatibility guide provides an easy-to-use reference in establishing a valid design. Providing simple cross-references between the regulator part number, the suggested C&D Technologies (NCL) family of inductors, a part number suitable for a typical application and including a worked example. Inductor selection may vary between individual application, inductors are available from C&D Technologies (NCL) in SMD, radial and axial format with current ratings from 350mA-13A and inductance ranges from 2.2µH-47mH which are suitable for most applications.

www.dc-dc.com

SELECTION OF INDUCTORS FOR SWITCHING REGULATORS

Analog silicon vendors produce a wide range of switching circuits. Design notes published by these vendors provide detailed guidance on the selection of inductors for optimum performance and efficiency, and should be consulted to finalise designs.

Switching regulators have two types of operation: continuous and discontinuous modes. The difference between the two modes is directly related to the current flowing through the inductor chosen for the regulator. In discontinuous mode the current through the inductor will drop to OA for a period of time during the switching cycle, the inductor used in continuous mode of operation will be exposed to current through out the entire switching period.

The mode of operation is dependant on individual application discontinuous mode is preferred for low load currents, and will utilise small inductor values. Continuous operation will provide greater output power however the continual flow of current will require larger values of inductance for high input voltages.

The inductance value for a switching regulator must be high enough to prevent excessive current and low enough to store sufficient energy in the core. DC Resistance should be as low as possible to reduce losses and minimise the self-heating effect of the inductor. Current ratings must be selected with care, and the core material chosen must be capable of storing the required energy without saturating.

If the maximum current rating of the inductor is exceeded the component will begin to heat up and drive the core material towards it Curie temperature causing the inductance to fall rapidly. Under specifying the current can lead to inductor saturation and the component becomes a mainly resistive element, the effect this has on the switching circuit is to increase the switch current considerably and reduce the load current.

Inductors are available in a wide range of ferrite and iron powder materials and produced in formats ranging from open wound ferrite rods to fully shielded components.

Practical inductor ranges are typically 2.2µH to 47mH however the majority of switching products are covered by the inductance ranges of 22µH to 100µH. C&D Technologies (NCL) offer a wide range of products based upon bobbin wound components, toroids and shielded products for optimum magnetic paths and low EMI radiation.

INDUCTOR SELECTION

The following equations provide a guide for a typical application, and are based on the Maxim 1636 Step Down controller for portable power.

The three key inductor parameters must be specified:

Inductance value (L), peak current (I_{PEAK}), and DC resistance (R_{DC}). The following equation includes a constant, LIR, which is the ratio of inductor peak-to-peak AC current to DC load current. A good compromise between size and losses is a 30% ripple-current to load-current ratio (LIR = 0.3), which corresponds to a peak inductor current 1.15 times higher than the DC load current. The following equation can be applied:

$$L = \frac{V_{OUT} (V_{IN(MAX)} - V_{OUT})}{V_{IN(MIN)} \times f \times I_{OUT} \times LIR}$$

Where: f = switching frequency, normally 200kHz or 300kHz I_{OUT} = maximum DC load current.

The peak current can be calculated by:

$$I_{Peak} = I_{LOAD} + \frac{V_{OUT} (V_{IN(MAX)} - V_{OUT})}{2 \times f \times L \times V_{IN(MAX)}}$$

Using the following table of parameters the inductors performance can be calculated.

І _{іN}	V _{IN Min}	V ₀	LIR	Operating Frequency
(А)	(V)	(V)		(kHz)
1	12	5	0.3	200

The inductor calculation for this particular application shows an inductance of $69.4\mu H$ with a peak current of 1.12 Amps.

The C&D Technologies (NCL) 26S680 SMD Shielded inductor would provide a suitable solution for this example. Higher efficiency and output current are achieved with lower inductor DC resistance.

SILICON SUPPORT MAGNETICS

Compatibility Guide

NATIONAL SEMICONDUCTOR				
	C&D Technologies (NCL)			
Family	Series	Part Number		
LM1575	26S	26\$330		
LM1577	1400	1410454		
LM2574	24S	24\$330		
LM2575	26S	26\$330		
LM2576	1400	1410454		
LM2577	1400	1410454		
LM2594	24S	24S100		
LM2595	26S	26\$680		
LM2596	1800R	18R153		
LM2597	24S	24\$330		
LM2598	1800R	18R683		
LM2599	1800R	18R153		
LM2651	26S	26\$220		
LM2653	265	26\$220		
LM2670	1800R	18R153		
LM2671	245	26\$101		
LM2672	265	26\$470		
LM2673	1400	1433606		
LM2674	265	26\$101		
LM2675	265	26\$470		
LM2676	1800R	18R153		
LM2677	1400	1422606		
LM2678	1400	1422606		
LM2679	1400	1422606		

MOTOROLA				
	C&D Technologies (NCL)			
Family	Series	Part Number		
C551411	26S	26S150		
C551412	26S	26S150		
C551413	26S	26S150		
C551414	26S	26S150		
C55171	26S	26S220		
C55172	26S	26S220		
C55173	26S	26S220		
LM2574	24S	24S331		
LM2575	26S	26S331		
LM2576	1400	1415449		
MC33163	1400	1415449		
MC33166	1400	1415449		
MC33167	1400	1415449		
MC33463	2600	26S470		
MC33465	2600	26S470		
MC33467	2600	26S470		
MC33680	2400	24330		
MC34167	2600	26S221		
MA78540	26S	26S221		
MC33167	2600	26\$331		

LINEAR TECHNOLOGY				
	C&D Technologies (NCL)			
Family	Series	Part Numbe		
LT149	26S	26S470		
LT1010	1400	1422514		
LT1013	1400	1422514		
LT1020	1400	1447448		
LT1109	22R	22R473		
LT1143	1800R	18R223		
LT1300	26S	26S220		
LT1301	1800R	18R333		
LT1302	1800R	18R220		
LT1303	1800R	18R473		
LT1317	265	26S100		
LT1370	1800R	18R472		
LT1371	24S	24S100		
LT1372	22R	22R473		
LT1374	1800R	18R472		
LT1375	24S	24S100		
LT1377	22R	22R683		
LT1500	265	26\$330		
LT1504	1800R	18R333		
LT1576	265	26S150		
LT1578	24S	24S150		
LT1610	1400	1447506		
LT1611	265	26S220		
LT1613	24S	24S220		
LT1617	26S	26S220		
LT1624	24S	24S100		
LT1777	26S	26\$150		
LT1930	24S	24S100		
LT1504A	26S	26S470		
LT1576-5	26S	265680		
LT1578-2.5	1800R	18R153		

TEXAS INSTRUMENTS				
	C&D Technologies (NCL)			
Family	Series	Part Number		
TPS5102	1400	1410313		
TPS56302	1400	1410313		
TPS61000	2400	24150		
TPS61001	2400	24150		
TPS61002	2400	24150		
TPS61003	2400	24150		
TPS61004	2400	24150		
TPS6734	2400	24220		
TPS6735	2400	24220		
UC257	1400	144738		
UCC2941	26S	26S220		
UCC2942	1400	1410313		
UCC3941	26S	26\$220		
UCC39411	26S	26\$220		
UCC39412	26S	26\$220		
UCC39413	26S	26\$220		

MAXIM C&D Technologies (NCL) Family Series Part Number MAX608 1800R 18R153 MAX629 2400 24220 MAX649 26S220 26S MAX651 26S 26S220 MAX652 26S 26S220 MAX668 1800R 18R472 MAX742 1800R 18R104 24S **MAX749** 24S470 MAX756 26S 26S220 MAX764 24S 24S470 MAX774 26S 26S220 MAX796 1400 1447423 MAX797 1400 1447423 **MAX798** 1400 1447423 MAX799 1447423 1400 MAX856 24S 24S470 2200R MAX866 22R683 MAX867 2200R 22R683 MAX1626 26S 26S220 MAX1627 26S 26S220 MAX1636 1800R 18R472 265150 MAX1652 26S MAX1653 26S 26S150 MAX1654 26S 26S150 MAX1655 26S 26S150 MAX1664 2400 24S100 MAX1672 26S 26S100 MAX1705 1800R 18R223 MAX1706 26S 26S220 MAX1714 1800R 18R472 MAX1715 1800R 18R472 MAX1771 1800R 18R223

The information provided in this application note is believed to be accurate and reliable, but is for guidance only and should not be relied upon. The user is responsible for ensuring that the C&D Technologies (NCL) product selected is wholly suitable for its intended application and, in particular, it should be noted that the specifications of semiconductor devices change from time to time. Nothing contained in this application note is intended to imply that there is any connection between C&D Technologies (NCL) and any third party mentioned in it. C&D Technologies (NCL) does not endorse such third parties or third party products, nor should it be implied (unless otherwise stated) that such third party endorses the products of C&D Technologies (NCL).

C&D Technologies (NCL) Limited reserve the right to alter or improve the specification, internal design or manufacturing process at any time, without notice. Please check with your supplier or visit our web site to ensure that you have the current and complete specification for your product before use. © C&D Technologies (NCL) Limited 2000 AN003.2

No part of this publication may be copied, transmitted or stored in a retrieval system or reproduced in any way including, but not limited to, photography, photocopy, magnetic or other recording means, without prior written permission from C&D Technologies (NCL) Limited.

Instructions for use are available from www.dc-dc.com

C&D Technologies (NCL) Ltd

Tanners Drive, Blakelands North Milton Keynes MK14 5BU, England Tel: +44 (0)1908 615232 Fax:+44 (0)1908 617545 email: info@cdtechno-nd.com

www: http://www.dc-dc.com

C&D Technologies (NCL), Inc.

8917 Glenwood Avenue, Raleigh NC 27612, USA Tel: +1 (919) 571-9405 Fax: +1 (919) 571-9262 email: info@us.cdtechno-ncl.com

