

Discontinued

SERIES PROGRAMMABLE DC/DC CONVERTER

POWER: 6 Amp Parallelable Boost Modules SIZE: 2.00" x

0.60" x .27"

FEATURES

- Small SIP Design
- Parallelable Boost SIP

One stocking part meets a variety of loads

Programmable Control SIP

Control/Boost Pair extremely configurable

Fast Transient Response

No need for large external capacitors Extremely small footprint

Low Component Count

Low cost, high reliability

Staked Pins

Wave solderable

Integrated Input Filter

Low input ripple

APPLICATION NOTE

DCAN-34 - 6-PAK Demo Board

Downloadable from our website - cdpowerelectronics.com

PRODUCT DATA SHEET =

DESCRIPTION

The 6-PAKTM is a modular system of control and boost SIPs. Each 6A control SIP can also drive up to 8 additional 6A boost SIPs in parallel, for a total of 54A. Each SIP accepts a regulated 5V input ($\pm 10\%$) and provides 2.5V to 3.6Vdc output. The circuit is optimized for high efficiency and fast load transient response needed by telecom, DSP and microprocessor applications.

Advanced thermal design, monolithic power circuitry and synchronous rectification result in outstanding performance and value. With integrated input filter and output capacitors, the 6-PAK system makes a complete power supply which requires no external components over the specified operating range. Pins are staked for wave solderability.

Ordering Information

Typical examples:

6P

25 - CA

6A Control SIP

6P

25 -

6A Power Booster SIP

6-PAK 8/2001 REV F Page 1

Electrical Specifications

Unless otherwise specified, operating conditions are as follows: $V_0 = 3.3V$, $T_A = 25$ °C, $C_{in} = 100 \mu F$

Parameter		Conditions	Min	Тур	Max	Units
Input						
Input Voltage	V_{in}		4.5	5.0	5.5	V _{DC}
Input Current Ripple		V _{in} = 4.5V to 5.5V, I _o = 6A			400	m A rms
Required Capacitance	Cin	Note 1	0	100		μF
Output						
Output Voltage	Vo	Nominal	3.25	3.3	3.35	V _{DC}
Output Program Range		Note 2	2.5		3.6	V _{DC}
Output Current	lo	T _A =60°C	0		6	Amps
Output Ripple		20Mhz BW		50	75	mVp-p
Output Rise Time	Tr	$V_{in} = 5V$, $I_o = 6A$ Resistive, $C_o = 0$		430	500	μS
Output Start-Up Time	Tr	$V_{in} = 5v$, $I_o = 6A$ Resistive, $C_O = 5000 \mu F$		3.0	4.0	mS
Output Capacitance Range	· C _o		0		5000	μF
Line Regulation		I₀ = 6A		<u>+</u> 0.2	<u>+</u> 0.5	%
Load Regulation		l _o min - l _o max, V _{in} = 4.5-5.5V		<u>+</u> 0.8	<u>+</u> 1.2	%
Temperature Coefficient T _A = -40°C to +60°C		$V_{in} = 5V, I_0 = 6A$			<u>+</u> 0.01	%/°C
Combined Variation		V _{in} min-max &/or I _o min-max T _A = -40°C to +60°C			<u>+</u> 2	%
Protection		Note 3				
General						
Switching Frequency				800		kHz
Dynamic Response						
$\Delta I_{O}/\Delta t = 1A/10 \mu sec$, $V_{i} = 5.0 V$, $T_{A} = 25 ^{\circ} C$						
Load Change from $I_0 = 0\%$ to $I_0 = 100\%$						
Peak Deviation				20	30	mV
Settling time (Vo<10% Peak Deviation)				130	200	μsec
Load change from $I_0 = 100\%$ to $I_0 = 0\%$ Peak Deviation				20	35	mV
Settling time (Vo<10% Peak Deviation)				200	300	μsec
Temperature						
Operating Temperature			-40		+60	°C
Storage Temperature			-40		+125	°C

Notes

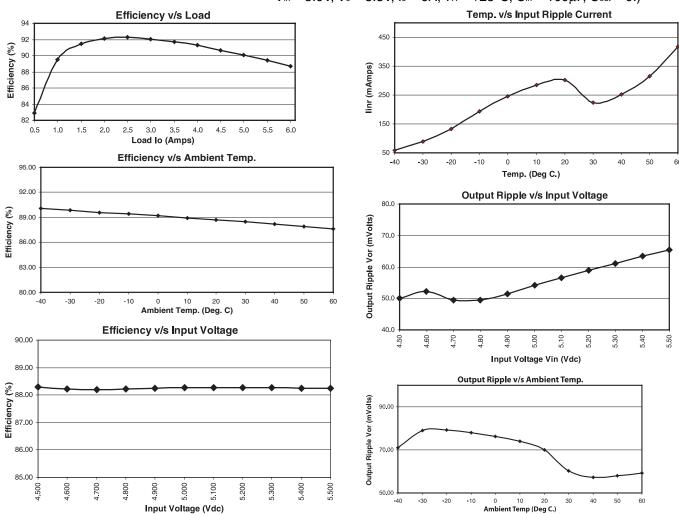
- 1. Input source<3" from 6-PAK™, load transient <3A per SIP. 100μF low ESR capacitor for load transients >3A per SIP.
- 2. Optional programming 2.5V 3.6V. See Table.
- 3. The unit is protected against short circuit on the output for durations not exceeding 10 seconds and a repetition rate of less than 5%.

Page 2 6-PAK 8/2001 REV F

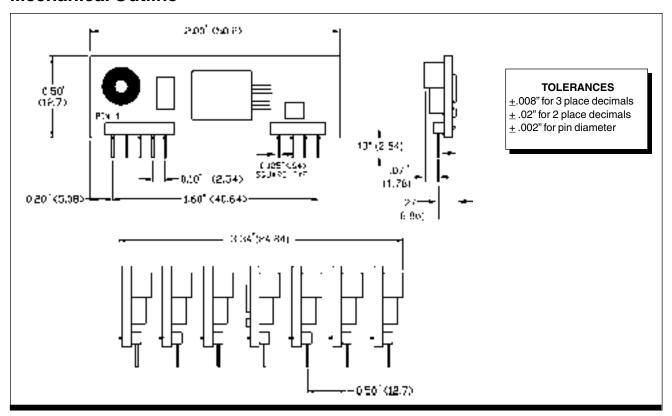
Programming

The 6-PAKTM is programmed through the Control SIP. All connected Power Boosters follow the Control SIP programming. To program the 6-PAKTM for $V_{out} < 3.3$, connect a resistor across the TRIM and V_{o} pins. For $V_{out} > 3.3$, resistor is connected across TRIM and GND.

Vout	Resistor Value	Vout	Resistor Value
2.5	196Ω	3.1	1.37k
2.6	255Ω	3.2	2.80k
2.7	332Ω	3.3	Open
2.8	442Ω	3.4	2.32k
2.9	604Ω	3.5	1.00k
3.0	866Ω	3.6	649Ω


Operating conditions are as follows: Vin=5V, Vo=3.3V, Load change from Io=0% to Io=100%, Ta=25°C, Cin=100 μ F, Co=0.

III Saed - (10) - 10 o V (10 fty) (10) V (20 fty)


Operating conditions are as follows: Vin=5V, Vo=3.3V, Load change from Io=100% to Io=0%, Ta=25°C, Cin=100 μ F, Co=0.

Typical Performance Curves (Unless otherwise specified, operating conditions are as follows: $V_{in} = 5.0V$, $V_{o} = 3.3V$, $I_{o} = 6A$, $T_{A} = +25^{\circ}C$, $C_{in} = 100\mu F$, $C_{out} = 0.$)

NOTE: The ambient temperature is as measured at approx. 1/4" away on the back side of the unit, with the probe end at approx. center (vertical & horizontal). For thermal performance, the unit was mounted on a 4"x4" PCB (with ground plane) & enclosed in a box so that it operates in a controlled environment.

Mechanical Outline

Pin Out

Pin	Function	Description
1	Vo	Output Voltage
2	Vo	Output Voltage
3	TRIM	Output Adjust*
4	GND	Ground
5	INTI	InterModule 1
6	Gnd	Ground
7	INT2	InterModule 2
8	Vi	5V Input Voltage
9	Vi	5V Input Voltage

^{*} not connected on Boosters

System Interconnection Guidelines

- Each SIP must have input, ground and output pins sunk into common input ground and output planes in the host PC board.
- Two additional common signal traces are required to interconnect INT1 and INT2 pins. These traces must be a least 0.06" wide and make a straight connection among the modules.
- 3. Power Booster SIP must be adjacent to the Control SIP located in the center of the layout, as shown in the Typical Example figure. Recommended distance between SIP pin centers is 0.5".
- 4. A 300 LFM air flow is required in direction from Pin 9 to Pin 1, to draw rated power from booster configuration. Each application using boosters should be evaluated for thermal performance.

Standard Options are shown, consult factory for other available options.

www.murata-ps.com/support

Page 4 6-PAK 8/2001 REV F