
Valid

1 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

APPLICATION NOTE

BED OCCUPANCY DETECTION

Valid

2 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

Table of Contents
1 Background ...3
2 Performance Characteristics ...4
3 Basic description of functionality..5
4 Detailed description of functions ..8

4.1 test_script ...8
4.2 out_of_bed_analyze...8
4.3 out_of_bed_init...9
4.4 filter_b2bs...10
4.5 calculate_simple_quality ..11
4.6 calculate_probability_of_occupied_bed ...11
4.7 create_coefficients ...12
4.8 sigmoid...12
4.9 number_of_coefficients ..12
4.10 is_bed_occupied ..12
4.11 analyze_alarm..13
4.12 save_old_data..13
4.13 algorithm_version...14
4.14 debug_gather_output ...14
4.15 debug_plot (extra) ..14

5 C-implementation ..14
6 FAQ...14
7 Example MATLAB code ..16

Valid

3 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

1 Background
Bed occupancy detection is one of the primary applications of the SCA10H and SCA11H
BCG devices. The BCG measures vitals of the person occupying the bed and thus it can
naturally be used to indicate when the bed is occupied and when it is not. However, due
to the accelerometer based measurement, human-induced vibration and external
sources of vibration can be difficult to separate, especially when taking into account the
various types of beds and environments possible. Thus more effort has to be placed on
the BCG data analysis in order to reliably and quickly determine the bed status.

A technique based on machine learning has been developed for this intent. The program
takes one line of BCG data as an input and returns a value for the probability of the bed
being occupied. This probability is then filtered and evaluated, and a binary output is
given for whether the bed is occupied or not at any given moment. The technique
requires the input data to be from a calibrated BCG device with a good signal quality.

The technique is provided as a MATLAB example code (found at the end of this
document) with a MATLAB Coder -made port to C-language available (see section 5).

Figure 1: Function of the Bed Occupancy Detection program

Valid

4 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

2 Performance Characteristics

The bed occupancy detection algorithm requires a well calibrated BCG device for good
performance. Following the nature of SCA10/11H BCG measurement, its output data is
based on the vibration experienced by the bed in question. A well calibrated sensor is
capable of distinguishing heart beat induced vibration from background noise and, to
some extent, vibration caused by movement or pushing of the bed. However, it is
possible that external vibration sources cause some false readings, due to which robust
occupancy detection requires an elaborate algorithm.

The vibrations experienced by the bed can differ greatly depending on how the person
enters the bed and how the person exits the bed. As it is possible to produce heart-beat
like vibrations by pushing the bed in a certain fashion, the time at which a person has
left the bed is defined as the moment when the person is no longer touching the bed.

The example code has configurable exponential filter and hysteresis limits that define
the levels where the bed is deemed occupied and vice versa. The speed at which the
algorithm detects bed occupancy is much dependent on these options. The filter alpha is
the primary mean of configuring the speed of operation for the detection. The smaller
the alpha, the slower the detection and the less likely false alarms are. The
recommended default alpha for robust functionality is 1/4. Use with faster filtering setting
should be well tested to ensure that not too many false alarms occur.

The following tests are done with a hospital bed. The duration from leaving the bed to
the actual alarm is measured from the moment when no part of the body touches the
bed any longer. The reported number is the average from 5 tests (except for 0.0625
alpha*, for which only 1 sample is taken). These numbers are intended to show the
scale of speeds that can be achieved, and mainly, how filtering affects the speed of
detection. Any significant vibration can increase detection delay for as long as the
vibration is continued (i.e. person stays in contact with the bed).

Table 1: Speed of empty bed detection at different filter constants (Alphas)
Alpha Speed of detection (seconds)
1 10.3
0.5 (1/2) 10.7
0.25 (1/4) 16.3
0.125 (1/8) 25.6
0.0625* (1/16) 44*

Valid

5 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

3 Basic description of functionality

The developed method is based on use of a machine learning algorithm that has been
used to analyze a large set of BCG data with reference information for bed occupancy.
This algorithm produces a set of parameters for use in the actual bed occupancy
detection, which is described in this document. These parameters are applicable for any
use case where BCG is well calibrated and a proper BCG signal can be measured.

The library is developed in MATLAB and comprises of the following functions
(test_script is the example main script, and out_of_bed_analyze is the main
function that calls all subfunctions of the program):

test_script
out_of_bed_analyze
out_of_bed_init
filter_b2bs
calculate_simple_quality
calculate_probability_of_occupied_bed
number_of_coefficients
create_coefficients
sigmoid
is_bed_occupied
analyze_alarm
save_old_data
algorithm_version
debug_gather_output
debug_plot

The basic flow of the program is visualized in the flow chart in figure 2. Overview of the
function of the program can be seen below (for more detailed insight, see function
descriptions in section 4 of this application note):

Valid

6 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

Figure 2: Functional flowchart of the test script and the subfunctions

Valid

7 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

test_script: The example main script. Read input file, initialize configurations and
the Data struct set in out_of_bed_init, and call the main function,
out_of_bed_analyze, in a for loop that always takes one line of BCG data as an
input. The main function returns an updated version of the Data struct that contains
information from that run of the main function. This is then used in the next loop of the
main function (Data struct is the "memory" of the program). debug_gather_output
and debug_plot are called and used for plotting purposes but are not required for the
actual functionality of the script.

Functionality of the main function, out_of_bed_analyze:

1. Poor quality data is filtered out by filter_b2bs.

2. calculate_simple_quality checks if the row has new data compared to last
lines of data (the BCG repeats the same line of data for up to 5 times if no new beats
are detected). Simple quality is used as a parameter of the occupancy probability
calculation.

3. calculate_probability_of_occupied_bed is the main calculation function of
the program. It uses the theta, diffs and means from Config (for which values have been
taught using the learning algorithm), and functions number_of_coefficients,
create_coefficients and sigmoid to calculate the probability for a line of data to
indicate the bed being occupied (probability 1 is that bed is certainly occupied). The
calculation uses heart rate, stroke volume and status from the line of BCG data in
addition to the previously calculated simple quality. The function goes to a set level
(Config.after_movement_from_mid) of probability of occupancy if movement is detected,
and discards configured number (Config. wait_time_after_movement) of lines of data
after movement events.

4. is_bed_occupied is used to analyze the probability output and compare it to the
"memory" contained in Data in order to determine whether bed is occupied or empty.
The function can be used to filter the probability (induce slower reaction to events, filter
coefficient set in Config). This will make the program slower, but more robust against
false alarms.

5. analyze_alarm is then used to make the actual "out of bed-alarm" functionality,
which basically introduces a delay before the alarm is "armed" after the bed becomes
occupied, and gives a binary output that detects changes in occupancy status for alarm
purposes.

6. save_old_data then saves the occupancy status, probability of occupancy and the
line of BCG data. These are saved in Data struct and used in the next loop of calculation
with the next line of BCG data. After this code the main function
out_of_bed_analyze returns the whole Data struct, which includes all the outputs
listed in out_of_bed_init (the filtered (Data.inbed(1) and unfiltered
(probability_of_occupied_bed) probability of occupancy, the occupancy state from
is_bed_occupied (Data.inbed(2)) and the alarm status from analyze_alarm).

Valid

8 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

4 Detailed description of functions
The functionality of the code is best explained through looking at the functionality of the
individual functions. All functions of this code are explained in this section in order to
further ease understanding the code, although the code is commented as well.

4.1 test_script

The example main script for testing purposes. Reads a BCG data file, initializes Config
and Data structs and calls out_of_bed_analyze for each line of data in the file.
The test script can be used to study the functionality of the Bed Occupancy Detection
algorithm on already logged files. A MATLAB toolbox is required for reading live data
from a BCG, but an example MATLAB runtime .exe for live feed testing can be supplied
at request.

Inputs:
BCG data file with the following format (bcg_data):
1092,0,0,0,0,3932,2,0,0,0
1093,0,0,0,0,5477,2,0,0,0
1094,86,9,46,178,3040,1,3000,0,0
1095,86,9,46,178,3060,1,3000,0,0
1096,86,9,46,178,3935,2,2286,0,0
Data content:
(timestamp, HR, RR, SV, HRV, SS, status, b2b, b2b', b2b'')

out_of_bed_init should be configured with preferred configurations as these are
called in the beginning of test_script

Outputs:
Saves the content of Data struct for each line of BCG data. Some of these are gathered
for debug plotting and visualization purposes by debug_gather_output

4.2 out_of_bed_analyze

The main function of the Bed Occupancy Detection algorithm. Calls all subfunctions that
contain the actual calculation functionality, and returns the Data struct that contains the
calculation results (listed in out_of_bed_init).

Inputs:
bcg_data: a size 10 struct containing a line of BCG data. (timestamp, HR, RR, SV, HRV,
SS, status, b2b, b2b', b2b'')
Data: struct of size 12 containing a set of history data (see out_of_bed_init for
details and sizes of the contained structs)
Config: struct of size 10 containing the configurations (see out_of_bed_init for
details and sizes of the contained structs)

Outputs:
Data: struct of size 12 with results of the calculation and stored data for next code loop
(see out_of_bed_init for details and sizes of the contained structs)

Valid

9 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

4.3 out_of_bed_init

The function that initializes the Data struct for the first run of out_of_bed_analyze
and the Config struct that contains all configuration information for use in
out_of_bed_analyze.

No inputs (configurations are set in the code and should be modified there if needed)

Outputs:

Data: initialization struct of size 12 for results of the calculation with the following names
and purposes (do not change):

.last_row: size 10, contains the previous line of BCG data

.bcg_row: size 10, contains the new line of BCG data, for which calculation is done

.row_is_new: buffer memory for checking if the latest BCG row is new or not (used for
simple quality calculation)

.quality: simple quality is saved in this, initialized as -1

.old_inbed: size 2 struct for storing the probability results of the previous line of BCG
data (old_inbed(1) is the filtered probability (0 to 1) and old_inbed(2) is the actual
occupancy state (0 for empty, 1 for occupied))

.inbed: size 2 struct for the probability calculation results (inbed(1) is the filtered
probability (0 to 1) and inbed(2) is the actual occupancy state (0 for empty, 1 for
occupied))

.armed: stores whether the alarm is armed (=1) or not (=0) at a given moment, alarm
can only go off if bed goes from occupied to empty and the alarm has been armed (it
arms after Config.alarm_arm_time of bed occupancy)

.alarm: the alarm binary, indicates if alarm is triggered (is nulled every round of
operation so is only displayed on the round where alarm is triggered)

.time_since_change: records how long the bed has been occupied, for comparison with
alarm_arm_time

.probability_of_occupied_bed: records the unfiltered probability of occupancy

.continue_after_movement: stores a counter that is set to
Config.wait_time_after_movement on movement occasions (bcg_data status is 2), and
counts down after movement. Can be used as a movement indicator (if this is >0,
movement is detected).

Config. initialization struct of size 10 for configuration options:

Valid

10 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

.alarm_arm_time: determines how many lines of occupied bed data are needed for the
alarm to arm

.probability_lp_alpha: The filtering of probability changes. This is the filter alpha that
affects the sensitivity of probability to changes, i.e. the speed of the occupancy
detection. 1 for no filtering, 1/4 is recommended for robust operation. For even more
robust operation, use smaller alpha, and for faster operation but more sensitivity to false
alarms, use 0.5 or 1 (verify with testing that no false alarms occur).

.quality_lp_alpha: Filter constant for simple quality changes, has a less clear effect on
the operation and thus change only with extensive testing. Default is 1/2.

.movement_lp_alpha: Filter constant for how quickly movement changes probability of
occupancy to 0.5-after_movement_from_mid when movement is detected (has minor
effect, should only be changes with caution and extensive testing). Default is 1.

.after_movement_from_mid: Data with movement is discarded and probability output will
be changed to 0.5-/+.after_movement_from_mid for lines with movement, depending on
whether bed has been empty or occupied (for example bed has been empty and
movement is detected, the probability that will be returned is 0.5-
after_movement_from_mid=0.25 with default settings).

.wait_time_after_movement: How many lines of data are discarded after movement
events (probability will be at 0.5-/+after_movement_from_mid). Movement events may
induce false readings that could cause false alarms, due to which a few lines are
discarded after movement events. Default is 4 (extensive testing and caution required if
changed)

.probability_limit_change_to_occupied: The first "hysteresis" limit of the Bed Occupancy
Detection. Determines the level at which bed occupancy status is changed to occupied
bed. Transition from empty bed to occupied bed only occurs when inbed(1) (probability
of occupied bed) goes above .probability_limit_change_to_occupied/100. The default is
70. Depending on the use case, this can be altered, but extensive testing is
recommended.

.probability_limit_change_to_empty: Vice versa, the bed goes from occupied to empty,
when inbed(1) goes under .probability_limit_change_to_empty/100. Default value is 10.

.theta: The machine-learned algorithm parameters. DO NOT CHANGE!

.diffs: The machine-learned algorithm parameters. DO NOT CHANGE!

.means: The machine-learned algorithm parameters. DO NOT CHANGE!

4.4 filter_b2bs

Filters data lines with b2b times of over 3 seconds out of the calculation.

Input:
bcg_data: the BCG data array

Valid

11 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

Output:
bcg_data: BCG data with lines with >3 seconds b2b times replaced with 0's (if b2b's are
all 0, the line will be "no new beat found" and thus discarded further on)

4.5 calculate_simple_quality

Calculates the "simple quality". Simple quality indicates the quality of the signal at a
given moment, as the BCG repeats a line of data in case no new beats are found.
Simple quality is thus calculated as "how many new beats should be found in the last 5
lines, and how many have been found". This is used as a parameter of the machine
learning algorithm and the occupancy calculation, i.e. poor quality is a weaker indication
of occupancy.

Input:
Data: the Data struct (see out_of_bed_init)
Config: the Config struct (see out_of_bed_init)
bcg_data: the filtered bcg_data from filter_b2bs

Output:
Data: the Data struct with following arrays updated:
.row_is_new: array of size 6, stores 1 for each row if the row is new, 0 if not
.quality: a value from 0-1, the closer to 1, the better quality the data

4.6 calculate_probability_of_occupied_bed

The main calculation function of the code. Uses the machine learned parameters in a
polynomial with second order cross correlations of stroke volume, heart rate variability
and simple quality, in order to calculate a probability of occupancy for a line of bcg_data.
Discards data during and after movement (bcg_data status is 2, waits for
Config.wait_time_after_movement until data is used in calculation again, keeps the
previous probability until movement ceases).
1.0.1 patch:
Added forced status overwrite when BCG data status 3 (accelerometer close to
saturation, very rare) or 4 (HR close to upper limit of 120, is possible with long periods of
false detections). See code comments for details.

Inputs:
Data: the Data struct with updated .row_is_new and .quality (see out_of_bed_init)
Config: the Config struct (see out_of_bed_init)
bcg_data: the filtered bcg_data from filter_b2bs

Output:
Data: the Data struct with the following array updated:
 .probability_of_occupied_bed: raw, unfiltered probability, from 0-1.

Valid

12 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

4.7 create_coefficients

Function used in calculate_probability_of_occupied_bed to calculate the
cross correlation coefficients from stroke volume, heart rate variability, status and simple
quality.

The coefficients, which are the basis of the whole calculation, are the following (St for
status, SQ for simple quality):

1, SV, SV^2, HRV, HRV^2, St, St^2, SQ, SQ^2, SV*HRV, SV*St, SV*SQ, HRV*St,
HRV*SQ, St*SQ

Input:
A: initialization matrix of size [4 x 15]
X: SV, HRV, status and simple quality, size 4 array

Output:
A: the calculated coefficients (listed above). Size 15 array.

4.8 sigmoid

The sigmoid function that is needed to return the actual probability from the result of the
coefficient*theta polynomial.

Input:
z: the value that will be run through the sigmoid function

Output:
z: the value ran through the sigmoid function (0-1)

4.9 number_of_coefficients

Function used in calculate_probability_of_occupied_bed to determine the
amount of coefficients that are calculated from the bcg_data (only required due to the C-
port).

Input:
X: the data values for which coefficients will be calculated (in this code, SV, HRV, status
and Data.quality)

Output:
num: the number of coefficients and cross coefficients for a 2nd order polynomial with all
possible cross coefficients. In this case, with 4 data values, the amount is 15.

4.10 is_bed_occupied

Filters and analyzes .probability_of_occupied_bed in order to determine actual bed
status. Changes status to occupied (Data.in_bed(2)->1) when filtered probability
(Data.inbed(1)) goes above Config.probability_limit_change_to_occupied, and to empty

Valid

13 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

(Data.in_bed(1)=0) when filtered probability (Data.inbed(1)) goes below
Config.probability_limit_change_to_empty.

Inputs:
Data: the Data struct with updated .probability_of_occupied_bed (see
out_of_bed_init)
Config: the Config struct (see out_of_bed_init)

Output:
Data: the Data struct with the following arrays updated:
.inbed(1), the filtered probability of occupancy
.inbed(2), the actual occupancy status of the bed at that moment

4.11 analyze_alarm

This function shows an example "out of bed alarm" functionality. The alarm is armed
after Config.alarm_arm_time of bed being occupied, and alarm is triggered when state
changes from occupied bed to empty bed with alarm being armed.

Input:
Data: uses the following Data inputs:
.old_inbed(2) & .inbed(2): Detects the change between old and new inbed status
.time_since_change: updates this variable (keeps track of status change from empty to
occupied in order to arm the alarm correctly)
Config:
.alarm_arm_time: determines how many lines of occupied bed data are needed in a row
in order to arm the alarm

Output:
Data: updates the following two variables
.time_since_change: this counter starts when status goes from empty to occupied and
grows when status stays occupied. Alarm is armed when this exceeds
Config.alarm_arm_time.
.armed: outputs 1 if alarm is armed, 0 for not armed
.alarm: if alarm is triggered, returns 1 for that line of data

4.12 save_old_data

A function to save the current line of bcg_data to Data.last_row, for use on the next loop.

Inputs:
Data: the Data struct
bcg_data: the current line of bcg data

Output:
Data: updates the following variables
.old_inbed: the current .inbed (occupancy status and filtered probability) is stored to
old_inbed
.last_row: the current bcg_data row is stored in this

Valid

14 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

4.13 algorithm_version

Outputs the current version of the code. See http://semver.org/.

Input:
versionArray: size 3 array for initialization

Output:
versionArray: size 3 array with version numbers in format [MAJOR, MINOR, PATCH]

4.14 debug_gather_output

A part of the main script, gathers the outputs for each line in the BCG data file for use in
plotting and debugging. Is not required for actual operation of the program. Not included
in the C-code.

4.15 debug_plot (extra)

The plotting function for debugging the functionality of the example script. Not required
for actual operation of the program. Not included in the C-code.

5 C-implementation

The MATLAB code is available as a direct port to C made with Matlab Coder. An
example main function with file reading capability is as well available, with a compiled
demo .exe for test purposes. The demo .exe reads a file and it prints the following
contents of the Data struct (only part of the possible outputs, for example Probability of
occupancy (unfiltered) is vital for debugging purposes) in to an output .txt file:
Data.inbed[0], Data.inbed[1], Data.alarm and Data.armed

The configurations described in the MATLAB code are as well configurable in the
out_of_bed_init.c function (where the Config->probability_lp_alpha is the main filter
constant discussed in section 2).

The above mentioned C components can be supplied at request.

6 FAQ

1.
Case: A person pushes the bed constantly (very lightly), and false readings and false
alarms are induced for an extended period.

Answer: It is very much possible to induce heart-beat-like vibrations in the bed. The
calibration should be able to reduce most of these false readings out of the produced
data, but false readings can be produced if one so tries. However, in a normal use case,

Valid

15 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

it is less likely that the vibrations endured by the bed are so "light" and "continuous" that
this kind of false alarms are actually produced. Use case specific discretion is advised,
increase in filter constant will reduce likelihood of false alarms in this case.

2.
Case: The bed is pushed once, after which a large number of false readings (>3 lines
with new heartbeats indicated) is produced. This results in bed occupancy status going
to occupied even no person occupies the bed.

Answer: This is due to the issue 1. and can occur on beds that keep vibrating for a long
time after being pushed (light structure, weak contact to the ground etc.). In this case,
one can increase the Config.wait_time_after_movement-variable to the amount of lines
that are commonly produced after pushes (this variable changes the amount of lines
discarded after movement events (line with status 2).)

3.
Case: A person occupies the bed, but bed status stays in "empty" or "movement" state.

Answer: The detection algorithm stays in "movement" state when the BCG data has its
status indicator at 2 (signal strength above a limit set through calibration). Thus, if the
person keeps moving significantly when occupying the bed, the algorithm will keep the
probability of occupancy at 0.25 until a moment of stable BCG signal is received. The
"slow" transition to occupied bed state in such cases is intentional and is meant to
prevent false alarms. If more rapid detection from empty to occupied bed is preferred,
the following configurations can be altered: Config.after_movement_from_mid and
Config.wait_time_after_movement. Thorough testing is advised if these are changed.

4.
Case: A person sits on the side of the bed and the status occasionally goes to
"occupied" and occasionally to "empty".

Answer: The situation where a person is sitting on the side of the bed is reasonably
difficult for the BCG; the person may move very much, or be very still and far from BCG
device. The bed plays a very significant role in this as well; in sturdy beds, it is very likely
that bed is deemed empty, whereas with less sturdy beds such as hospital beds, it is
likely that the BCG may still get a very good signal and the situation is very similar to a
person lying in the bed. This is thus very use case specific and one should do testing in
order to make the solution fit for your application and specification. The
Config.probability_lp_alpha, .after_movement_from_mid,
.probability_limit_change_to_empty/occupied and .wait_time_after_movement can be
altered in order to match your use case, however very thorough testing is required to
avoid false alarms.

Valid

16 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

7 Example MATLAB code

SEPARATE EACH FUNCTION TO ITS OWN .m FILE
(functions split by %%%% in this document, name files as (<function_name>.m) in a single folder and
run test_script.m)

% THIS SOFTWARE IS PROVIDED BY MURATA "AS IS" AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
% LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
% FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
% MURATA BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
% SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
% HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
% STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
% IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.

%%%%test_script (example main script)

clear;clc;

bcg_data_full = load('sample.txt');
n_bcg_data_full = length(bcg_data_full);

[Config, Data] = out_of_bed_init();

DEBUG = [];

for i = 1 : n_bcg_data_full
 bcg_data = bcg_data_full(i,:);

 [Data] = out_of_bed_analyze(...
 bcg_data,...
 Data,...
 Config);

 DEBUG = debug_gather_output(DEBUG, Data);
end

fprintf('Algorithm version: %u.%u.%u\n',algorithm_version());

debug_plot(bcg_data_full, DEBUG);

%%

function [Data] = out_of_bed_analyze(bcg_data, Data, Config)

% Remove beat-to-beat times higher than 3 seconds
[bcg_data] = filter_b2bs(bcg_data);

%Calculate quality of given BCG data row
[Data] = calculate_simple_quality(Data, Config, bcg_data);

% Calculate probability of occupied bed with machine learning parameters
[Data] = calculate_probability_of_occupied_bed(Data, Config, bcg_data);

% Check if bed is occupied with filtering probabily of occupied bed and
% configured limits
[Data] = is_bed_occupied(Data, Config);

% Alarm if bed occupancy changes from occupied to empty
[Data] = analyze_alarm(Data, Config);

% Save data for later use
[Data] = save_old_data(Data, bcg_data);

end

%%

Valid

17 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

function [Config, Data] = out_of_bed_init()
%% Initialize Config and Data for out of bed functin
% For Config recommended values are shown in [x,y]
Config = struct(...
 'alarm_arm_time' ,15,... %]0,minutes] How many seconds bed has to be occupied for
alarm to arm
 'probability_lp_alpha' ,0.25,... %]0,1] Alpha of exponential low-pass filter for
probability calculation. lp_alpha = 1 use only new data, lp_alpha = 0 use only old data.
 'quality_lp_alpha' ,0.5,... %]0,1]
 'movement_lp_alpha' ,1,... %]0,1]
 'after_movement_from_mid' ,25,... % [0,50] When status == 2 and if bed is empty, probability
will go towards mid - after_movement_from_mid, for occupied bed mid + after_movement_from_mid
 'wait_time_after_movement' ,4,... % [3, 10] How long to "discard" data after movement
(status == 2)
 'probability_limit_change_to_empty' ,10,... % Hysteresis for bed change. If bed is occupied then if
probability goes below probability_limit_change_to_empty bed occupancy will change state to empty.
 'probability_limit_change_to_occupied' ,70,... % Hysteresis for bed change. If bed is empty then probability
above probability_limit_change_to_occupied will change state to occupied.
 'theta' ,[1.25327673218370;8.20838552198670;-0.707819180435162;-
3.63571199150006;0.565736951277293;2.96713769453942;0.739374330119046;1.11427635749243;-3.94127382847697;-
0.129513358467535;5.83994952045181;0.00968936848427784;-3.09884504261136;-0.892051707489366;-4.61609415116457],...
 'diffs' ,[140,322,1,0.999996945687371],...
 'means'
,[31.7630893838588,41.6760196702343,0.630604570436795,0.383120703608465]...
);

Data = struct(...
 'last_row' ,zeros(1,10),...
 'bcg_row' ,zeros(1,10),...
 'row_is_new' ,zeros(5,1),...
 'quality' ,-1,...
 'old_inbed' ,[0,0],...
 'inbed' ,[-1,0],...
 'alarm_time' ,-1,...
 'armed' ,0,...
 'alarm' ,0,...
 'time_since_change' ,1,...
 'probability_of_occupied_bed' ,0, ...
 'continue_after_movement' ,0 ...
);
end

%%

function [bcg_data] = filter_b2bs(bcg_data)
%FILTER_B2BS Removes b2bs higher than 3 seconds
% Removes b2bs higher than 3 seconds, i.e, HR lower than 20 bpm

b2bs = bcg_data(8:10);
b2bs(b2bs > 3000) = 0;
bcg_data(8:10) = b2bs;
end

%%

function [Data] = calculate_simple_quality(Data, Config, bcg_data)
%CALCULATE_SIMPLE_QUALITY Calculate quality of given BCG data row
% Calculate quality of given BCG data row by analyzing how many rows of
% new data (i.e. rows where were new beats) compared to expected number
% of rows of new data based on HR. That is, if HR >= 60 every row should
% have new beat. This ratio of actual new rows / expected new rows in
% last 5 seconds is used then as sqrt(quality).

% Row is new if everything except timestamp, signal strength and status are
% same. Also b2b times need to be at most 2 seconds i.e. HR >= 30;
Data.row_is_new(1:end-1) = Data.row_is_new(2:end);
Data.row_is_new(end) = ~all(Data.last_row([2:5,8:10]) == bcg_data([2:5, 8:10])) ...
 & bcg_data(8) > 0 ...
 & bcg_data(8) < 2000;

new_row_sum = sum(Data.row_is_new);
simple_quality_length = 5;
if bcg_data(2) >= 60
 tmp = new_row_sum / simple_quality_length;
else
 rows_required = floor(bcg_data(2) / 60 * simple_quality_length);
 % hr = beats / minute (60 seconds)
 if rows_required == 0

Valid

18 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

 tmp = 0;
 else
 tmp = min([1,new_row_sum / rows_required]);
 end
end
tmp = tmp * tmp; % decreases lower qualities further
if Data.quality == -1
 Data.quality = tmp;
else
 Data.quality = Config.quality_lp_alpha*tmp + (1-Config.quality_lp_alpha)*Data.quality;

end

%%

function [Data] = calculate_probability_of_occupied_bed(Data, Config, bcg_data)
%CALCULATE_OCCUPIED_BED Calculates probability of occupied bed
% Calculates probability of occupied bed based on machine learned
% parameters

status = bcg_data(7);

if status == 4
 if bcg_data(2) ~= 0 %overwrite statuses 3 (SS overload) and 4 (HR close to max) so that they are not used for
calculation,
 status = 1; %if HR value in bcg_data, overwrite 4 as 1, and if no HR value, overwrite as 0
 else %will result in weird performance when these statuses show up, BUGFIX JIKI 11.1.-18
 status = 0;
 end
elseif status == 3
 status = 2;
end

if status == 2
 Data.continue_after_movement = Config.wait_time_after_movement;
 if Data.old_inbed(2) == 0
 % If bed is empty, then probability will go towards mid -
 % after_movement_from mid (i.e. 0.5 - after_movement_from_mid/100)
 Data.probability_of_occupied_bed...
 = Config.movement_lp_alpha*(0.5 - Config.after_movement_from_mid/100) + (1-
Config.movement_lp_alpha)*Data.old_inbed(1);
 else
 % If bed is occupied, then probability will go towards mid +
 % after_movement_from mid (i.e. 0.5 + after_movement_from_mid/100)
 Data.probability_of_occupied_bed....
 = Config.movement_lp_alpha*(0.5 + Config.after_movement_from_mid/100) + (1-
Config.movement_lp_alpha)*Data.old_inbed(1);
 end
else
 if Data.continue_after_movement > 0
 % If not enough time has passed since movement (status == 2), then
 % return last probability. That is, discard
 % wait_time_after_movement seconds of data after movement
 Data.continue_after_movement = Data.continue_after_movement - 1;
 Data.probability_of_occupied_bed = Data.old_inbed(1);
 else
 % Use machine learned parameters to calculate probapility of
 % occupied bed (probability of empty bed == 1 - probability of
 % occupied bed)
 X = [bcg_data(4), bcg_data(5), status, Data.quality]; % gather data
 X = (X - Config.means) ./ Config.diffs; % scale data
 A = ones(size(X,1),number_of_coefficients(X));
 A = create_coefficients(X, A); % create "coefficients", i.e., [1, x1, x1^2, x2,
x2^2, x1*x2....]
 Data.probability_of_occupied_bed = sigmoid(A*Config.theta);
 end
end
end

%%

function A = create_coefficients(X, A)
%CREATE_COEFFICIENTS Create coefficients for matrix X
% Calculates coefficients and cross-coefficients for matrix X to 2nd
% degree. [1, x1, x1^2, x2, x2^2, x1*x2...]
A_ind = 1;
n = size(X,2);
for i_n = 1 : n
 m = A_ind;
 tmp = 1;

Valid

19 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

 ind = 0;
 while tmp <= m
 ind = ind + 1;
 tmp = tmp + ind-1;
 A_ind = A_ind + 1;
 A(:,A_ind) = A(:, tmp).*X(:,i_n);
 end
end
1;
end

%%

function [g] = sigmoid(z)
%% SIGMOID function
g = 1 ./ (1+exp(-z));
end

%%

function num = number_of_coefficients(X)
%NUMBER_OF_COEFFICIENTS Calculates number of coefficients
% Calculates number of coeffients and cross-coefficients for X for 2nd
% degree

n = size(X,2);
num = (n+1) * (1 + n/2);

%%

function [Data] = is_bed_occupied(Data, Config)
%ANALYZE_BED Checks whether bed status is changed to occupied or empty
% Checks whether bed is changed to occupied or empty based on hysteresis
% by probability_limit_change_to_empty & probability_limit_change_to_occupied.
% If no change in bed status, then inbed(2) will
% not change thus last bed status is held (inbed(1) will update). Also
% possibility to use low pass exponential filter to smoothen changes.
%
% Bed is changed to occupied if
% inbed(1) > probability_limit_change_to_occupied/100
% and to empty if
% inbed(1) < Config.probability_limit_change_to_empty/100

if Data.inbed(1) ~= -1
 Data.inbed(1) = Config.probability_lp_alpha*Data.probability_of_occupied_bed...
 + (1-Config.probability_lp_alpha)*Data.inbed(1);
else
 Data.inbed(1) = Data.probability_of_occupied_bed;
end
if Data.inbed(1) > Config.probability_limit_change_to_occupied/100
 Data.inbed(2) = 1;
elseif Data.inbed(1) < Config.probability_limit_change_to_empty/100
 Data.inbed(2) = 0;
end
end

%%

function [Data] = analyze_alarm(Data, Config)
%ANALYZE_ALARM Alarms if bed occupancy changes from occupied to empty
% Alarms if bed occupancy changes from occupied to empty and alarm has
% been armed

Data.alarm = 0;
if Data.time_since_change ~= -1
 Data.time_since_change = Data.time_since_change + 1;
end

if Data.old_inbed(2) == 0 && Data.inbed(2) == 1
 % From empty bed to occupied bed
 Data.time_since_change = 0;
elseif Data.old_inbed(2) == 1 && Data.inbed(2) == 0
 % From occupied bed to empty bed
 if Data.time_since_change >= Config.alarm_arm_time
 % If been in bed longer than alarm_arm_time then alarm!

Valid

20 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

 Data.alarm = 1;
 Data.time_since_change = -1;
 end
elseif Data.inbed(2) == 0
 % Make sure no old time_since_change is accidentally left
 Data.time_since_change = -1;
end

if Data.time_since_change >= Config.alarm_arm_time
 % Arm the alarm if been in bed alarm_arm_time
 Data.armed = 1;
else
 Data.armed = 0;
end
end

%%

function [Data] = save_old_data(Data, bcg_data)
%SAVE_OLD_DATA Saves data for later use

Data.old_inbed = Data.inbed;
Data.last_row = bcg_data;
end

%%

function [versionArray] = algorithm_version(versionArray)
% ALGORITHM_VERSION returns the algorithm version.
% The ALGORITHM_VERSION returns algorithm version in array.
% The version array has the following structure: [MAJOR,MINOR,PATCH]. See
% more information at http://semver.org/

MAJOR = 1;
MINOR = 0;
PATCH = 1;

versionArray(:) = [MAJOR, MINOR, PATCH];

end

%%

function [DEBUG] = debug_gather_output(DEBUG, Data)
is_in_bed = Data.inbed(2);
prob_in_bed = Data.inbed(1);
fixed_prob = is_in_bed * prob_in_bed + (1-is_in_bed)*(1-prob_in_bed); % If occupied bed, shows probability of
occupied bed, if empty bed, shows probability of empty bed (1 - probability of occupied bed)
%fprintf('In bed %u with probability of %.0f %%. ',is_in_bed, fixed_prob*100);
% if Data.alarm > 0
% fprintf('ALARM!!!');
% end
% fprintf('\n');
DEBUG = [DEBUG; [Data.probability_of_occupied_bed, Data.inbed(1), Data.inbed(2), Data.alarm*2-1, Data.armed]];
end

%%

function [] = debug_plot(bcg_data_full, DEBUG)
figure;
hold on;
plot(bcg_data_full(:,1), bcg_data_full(:,6));
plot(bcg_data_full(:,1), DEBUG(:,1).*1000,'c--')
plot(bcg_data_full(:,1), DEBUG(:,2).*1000,'c');
plot(bcg_data_full(:,1), DEBUG(:,3).*2000,'k','LineWidth',2);
plot(bcg_data_full(:,1), DEBUG(:,4).*3000,'r*');
plot(bcg_data_full(:,1), DEBUG(:,5).*1100-100,'r--','LineWidth',2);
hold off;
ylim([0 3500]);
legend('BCG SS', 'Probability', 'Inbed(1)', 'Occupied', 'Alarm', 'Armed');
end

%%

Valid

21 (21)

Murata Electronics Oy SCA10H/SCA11H Doc.No. 3920
www.murata.com Rev. 3

Rev. Date Change Description
1 8-September-17 First version.
2 13-September-17 Revised figure 1.

3 19-January-18 Code to version 1.0.1. Bugfix for cases where BCG data status
output is 3 or 4

Valid

Signatures:

Controlled
Document
Approval:

I approve this document.

Name: Sten Stockmann
MURATAFI\STST

Title:

Sten Stockmann 2018-01-19 15:11:41 (UTC+02:00)

Electronically Signed in Timestamp

		2018-01-19T15:12:15+0200
	M-Files QMS Server
	Genuine QMS Controlled Document

