# **Basic Characteristics**

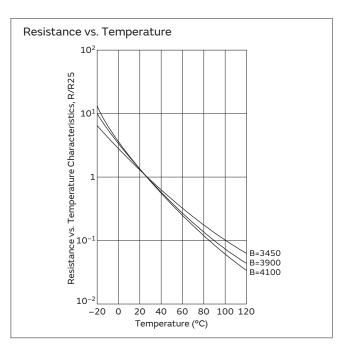
# Basic Characteristics

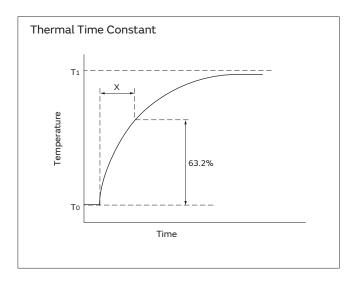
### 1. Zero-power Resistance of Thermistor: R

R=R<sub>0</sub> expB (1/T-1/T<sub>0</sub>) .....(1) R: Resistance in ambient temperature T (K) (K: absolute temperature)

- Ro: Resistance in ambient temperature To (K)
- B: B-Constant of Thermistor

### 2. B-Constant


| as (1) formula                                 |    |
|------------------------------------------------|----|
| $B = \ell n (R/R_0) / (1/T - 1/T_0) \cdots (2$ | 2) |


### 3. Thermal Dissipation Constant

When electric power P (mW) is spent in ambient temperature T<sub>1</sub> and thermistor temperature rises T<sub>2</sub>, the formula is as follows  $P=C (T_2-T_1) \cdots (3)$ C: Thermal dissipation constant (mW/°C) Thermal dissipation constant is varied with dimensions, measurement conditions, etc.

#### 4. Thermal Time Constant

Period in which the thermistor's temperature will change 63.2% of its temperature difference from ambient temperature  $T_0$  (°C) to  $T_1$  (°C).





#### Performance

| ltem                            | Condition                                                                                                                                                           |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resistance                      | Measured by zero-power in specified ambient temperature.                                                                                                            |
| B-Constant                      | Calculated between two specified ambient temperatures by the next formula.<br>T and To is absolute temperature (K).<br>$B = \frac{\partial n (R/R_0)}{1/T - 1/T_0}$ |
| Thermal Dissipation<br>Constant | Shows necessary electric power that Thermistor's temperature rises 1°C by self-heating.<br>It is calculated by the next formula (mW/°C).<br>$C = -\frac{P}{T-T_0}$  |
| Rated Electric Power            | Shows the required electric power that causes the thermistor's temperature to rise to a specified temperature by self-heating, at ambient temperature of 25 °C.     |
| Permissible Operating Current   | It is possible to keep the thermistor's temperature rising max. 1°C.                                                                                                |

Please inquire about test conditions and ratings.

# muRata