基本特性

基本特性

1. 热敏电阻的零功率电阻值: R

 $R=R_0 \ expB \ (1/T-1/T_0) \ \cdots \ (1)$

R: 环境温度T(K)下的电阻值

(K: 绝对温度)

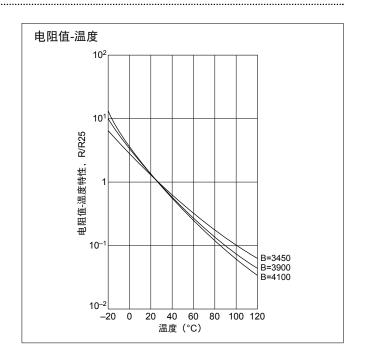
Ro: 环境温度To(K)下的电阻值

B: 热敏电阻的B常数

2. B常数

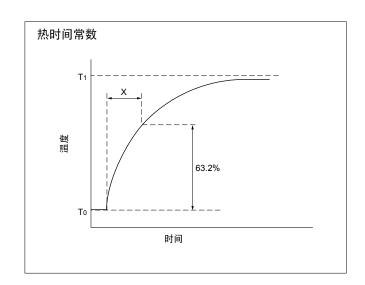
如公式(1)

 $B=\ell \ n \ (R/R_0) \ / \ (1/T-1/T_0) \ ... \ (2)$


3. 热耗散常数

当在环境温度 T_1 下电功率为P(mW)且热敏电阻温度升高 T_2 时,则使用如下公式

P=C (T₂-T₁) · · · · · · (3)


C: 热耗散常数 (mW/°C)

热耗散常数随尺寸、测量条件等变化。

4. 热时间常数

环境温度从 T_0 (°C) 变到 T_1 (°C) 时热敏电阻的温度变化 63.2%所需的时间。

性能

项目	条件
电阻值	在规定环境温度下按零功率进行测量。
B常数	按下列公式在两个规定的环境温度之间进行计算。 $T和To 为绝对温度(K)。 $
热耗散常数	显示了热敏电阻通过自发热温度升高 1° C时所需的电功率。 按以下公式计算得出(mW/ $^{\circ}$ C)。 $C = \frac{P}{T-T_0}$
额定电功率	显示了环境温度为25°C的情况下,热敏电阻通过自加热温度升高至规定温度时所需的电功率。
允许工作电流	可使热敏电阻的升温保持不超过1°C。

请查询有关测试条件和额定值的情况。