■ Murata's recommendation 推奨回路定数 | Item | | | | Condition | |------------------------------|---------------------|-------|-----|---------------------------------| | IC name | | IC名 | | CC26xx(XOSC_CAPARRAY_DELTA=-16) | | Parts Number of Crystal Unit | | 品番 | | XRCGB24M000FBP12R0 | | Circuit Parameter | External | 負荷容量 | CL1 | Open | | | load capacitance | 負荷容量 | CL2 | Open | | | Feedback resistance | 帰還抵抗 | Rf | No mount | | | Damping resistance | 制限抵抗 | Rd | 0ohm | | Supply Voltage Range | | 電源電圧範 | 井 | 1.8 to 3.8V | | Temp. Range | | 温度範囲 | | -30 to 85deg.C | Test Circuit Set: 1.8 to 3.8V Evaluation board CC26xx(XOSC_CAPARRAY_DELTA=-16) CL_int=6.4pF Rf Rd≲ Crystal Unit VIN VOUT CL2 + Measurement equipment Oscilloscope Current probe CT-6(T) P5100A(T) (40Mohm/2.5pF) Passive probe Frequency counter 53181A(K) Sepectrum analyzer E4401B(K) (K) Keysight (T) Tektronix Crystal Unit: XRCGB24M000FBP12R0 Set =1.8 to 3.8V CL1 =Open CL2 =Open Rf : No mount Rd =0ohm Ta =-30 to 85deg.C #### ■ Characteristics of oscillation circuit on above condition 推奨定数での発振回路特性 | Circuit Characteristics
特性 | Value
測定値 | | | Remarks
備考 | | |---|--------------|---|---------|--|--| | Center Frequency and Difference
発振回路における発振周波数とそのずれ量 (*1) | 24.00 | 24 (100 1 MHz 1 - ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | | Oscillating frequency and its shift against nominal frequency
発振回路における発振周波数と振動子の公称周波数に対する | | | (Typical sample at Set=3.3V,+25deg.C) | | 1 | [ppm] | ずれ量 | | | Load Capacitance on your PCB
負荷容量値
(Typical sample at Set=3.3V,+25deg.C) | 5.9 | | [pF] | This value shows load capacitance the evaluated circuit has
発振回路において振動子の両端に仮想的に接続される容量 | | | Negative Resistance and Oscillation margin
負性抵抗/発振余裕度 | -R | 400 | [Ω] | The details is explained in page 2
詳細につきましては、次頁をご参照下さい。 | | | (at Set=3.3V,+25deg.C) | Ratio | 5.0 | [Times] | | | | Drive Level
ドライブレベル
(Typical sample at Set=3.3V,+25deg.C) | 28 | | [uW] | Drive power of crystal under circuit condition
発振回路が動作している状態において振動子で消費される
電力 | | | Oscillating Voltage
発振電圧 | VINp-p | 1.0 | [V] | Swing level at input side
発振入力振幅 (VIN_H - VIN_L) | | | (Typical sample at Set=3.3V,+25deg.C) | VOUTp-p | 1.0 | [V] | Swing level at output side
発振出力振幅 (VOUT_H - VOUT_L) | | | Oscillation Start up Time
起動時間 (*2)
(Typical sample at Set=3.3V,+25deg.C) | 0.22 | | [ms] | The time takes steady amplitude of Vout(Xout)
定常状態の発振振幅に達するまでの時間 | | ^{*1} Frequency difference means the oscillating frequency difference between your PCB and Murata's frequency sorting circuit. 貴社基板と当社検査回路では、同一振動子を使用した場合でも発振周波数の差が生じます。これを発振周波数相関と呼びます。 *2 The measurement results is affected by the rise-up characteristics of supplied voltage on your PCB. 測定結果は実装基板の電源立ち上がり特性の影響を受けます。 The characteristics of the crystal oscillation circuit is affected by the circuit constants and actual mounting conditions and so on. Therefore, it is possible to get the different results from above one due to the production variation of the crystal oscillator circuitry. In your company, please use this results after confirmation of the matching between our crystal unit and oscillator circuit. And furthermore, since the above-mentioned evaluation results evaluate only an oscillating circuit block, please confirm the checking of operations of a set in your company. #### 注意事項 イス・マット 発振回路の特性は回路定数や実装状態により影響を受けるため、回路や基板のパラツキ等によっては上記の結果と異なる可能性があります。 貴社におかれましても弊社水晶振動子と発振回路とのマッチングをご確認の上、ご使用下さるようお願い致します。 また上記評価結果は発振回路ブロックのみを評価したものですので、セットの動作確認は貴社にてご確認下さるようお願い致します。 Murata Manufacturing Co., Ltd. ## ■ Test Data : Characteristics of recommended conditions # Center frequency Center frequency difference 24.000110 MHz 1 ppm from 24MHz This frequency difference causes imbalance of initial frequency tolerance on your PCB, because of load capacitance difference. ## Load capacitance of the circuit This value shows load capacitance the evaluated circuit has Our crystal proposed in this report is sorted with 6pF as load capacitance ### **Negative resistance** Ratio of negative resistance |-R| to R1spec. #### 5.0 times Ratio Ratio = |-R| / R1spec. R| 400 ohm Negative resistance |-R| = Rs_max + Re 346 ohm Maximum series resistance for Crystal Unit to keep oscillation Re: 54.0 ohm Effective resistance of Crystal Unit at actual oscillation frequency R1spec. 80 ohm Equivalent series resistance #### **Drive level** Drive power of crystal under circuit condition shown in page 1 #### **Drive level** 28 uW Drive level = $I^2 \times R1$ 43.9 ohm Murata Manufacturing Co., Ltd.