32.768kHz MEMS Resonator

Application

- Small and low-profile devices
 Ex. Wearables, Stylus pen, Wireless module, Hearing aids, Smart cards, Medical patch devices, Wireless Earphone, etc.
- Industrial Equipment
 Ex. Encoder, PLC (Programmable Logic Controller)
 FEMS (Factory Energy Management System)
 BEMS (Building Energy Management System), etc.
- Lighting
- Embedding in ICs
 Ex. Microcomputers, real-time clocks, etc.

Product Concept

- World’s Smallest Size 0.9 x 0.6 x 0.3 (in mm)
 - Realizing 50% area saving compared with 1.2x1.0mm sized turning fork crystal.
- Built-in Capacitance
 - Space saving by reducing the external load capacitance for oscillation circuit.
- High Temperature / High Reliability
 - Available for use in high temperature applications due to the use of non organic adhesives.
- Low ESR
 - Lower power consumption can be realized by optimizing IC gain.

High Temperature / High Reliability

- HAST*/PCT** Test
 [Test condition] Temperature: 120°C, Humidity: 85%, Air pressure: 1.7atm

Frequency drift

![Graph showing frequency drift comparison between conventional crystal resonator and Murata MEMS resonator.](image)

Murata MEMS exhibits stable frequency stability even under harsh environment by eliminating organic material inside the package.

Temperature characteristics

![Graph showing temperature characteristics comparison between Murata MEMS resonator and conventional crystal resonator.](image)

Good temperature characteristics are realized by optimizing device structure and design.

*High Accelerated Stress Test
**Pressure Cooker Test

Product specifications are as of April 2020. They are subject to change without notice.
Murata Manufacturing Co., Ltd.
No. VPPT-2004-0004-D
Space saving

65% space saving is achieved compared to a 1.2x1.0mm sized crystal with 0.4x0.2mm sized load capacitors.

Low power consumption

The low ESR can be utilized to lower the IC gain. This enables a reduction in the current consumption of the oscillation circuit and the power consumption of the overall design.

<table>
<thead>
<tr>
<th>Resonator</th>
<th>ESR spec.</th>
<th>IC gain</th>
<th>Oscillation margin</th>
<th>Current Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>General 2012 and 1610 size crystal</td>
<td>90 kΩ max.</td>
<td>High</td>
<td>Good Enough</td>
<td>115.6 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Not Enough</td>
<td>100.9 nA</td>
</tr>
<tr>
<td>Murata MEMS</td>
<td>75 kΩ max.</td>
<td>High</td>
<td>Excellent</td>
<td>115.5 nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Good Enough</td>
<td>100.9 nA</td>
</tr>
</tbody>
</table>

13% saving!

Product lineup and dimensions

<table>
<thead>
<tr>
<th>Part number</th>
<th>Operating Temperature Range</th>
<th>Frequency Tolerance</th>
<th>Frequency Shift by Temperature</th>
<th>Load Capacitance*</th>
<th>Equivalent Series Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMRAG32K76CS1C00R0</td>
<td>-30 to +85°C</td>
<td>±20ppm</td>
<td>-150 to +10 ppm</td>
<td>8pF</td>
<td>75 kΩ max.</td>
</tr>
<tr>
<td>WMRAG32K76CS2C00R0</td>
<td>-40 to +85°C</td>
<td></td>
<td>-200 to +10 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMRAG32K76CS3C00R0</td>
<td>-40 to +105°C</td>
<td></td>
<td>-270 to +10 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMRAG32K76CS4C00R0</td>
<td>-40 to +125°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*When considering replacement from a crystal resonator, note that the load capacitance value differs for crystal resonators and MEMS resonators.

Terminal No.
(1) X1 or Xout
(2) GND
(3) GND or NC

If you need...

MEMS on PCB Sample Also Available!