1. Scope
This reference specification applies to Chip EMIFIL LC Combined Monolithic Type NFL18ST_H Series.

2. Part Numbering

<table>
<thead>
<tr>
<th>NF</th>
<th>L</th>
<th>Dimension (L×W)</th>
<th>ST</th>
<th>506</th>
<th>H</th>
<th>1A</th>
<th>3</th>
<th>D</th>
<th>Packaging Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(D : Taping / B : Bulk)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Product ID Structure Dimension Features Cut-off Frequency Characteristics Rated Voltage Electrode Packaging Code

3. Rating

<table>
<thead>
<tr>
<th>Customer Part Number</th>
<th>MURATA Part Number</th>
<th>Cut-off Frequency [MHz]</th>
<th>Insertion Loss (I.L.)[dB]</th>
<th>Insulation Resistance [MΩ min.]</th>
<th>Rated Current [mA(DC)]</th>
<th>Rated Voltage [V(DC)]</th>
<th>Withstanding Voltage [V(DC)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFL18ST506H1A3D</td>
<td>NFL18ST506H1A3B</td>
<td>50 max. (0 to 50MHz)</td>
<td>30 min. (200 to 1000MHz)</td>
<td>75</td>
<td>1000</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>NFL18ST706H1A3D</td>
<td>NFL18ST706H1A3B</td>
<td>70 max. (0 to 70MHz)</td>
<td>30 min. (300 to 1000MHz)</td>
<td>100</td>
<td>1000</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>NFL18ST107H1A3D</td>
<td>NFL18ST107H1A3B</td>
<td>100 max. (0 to 100MHz)</td>
<td>30 min. (400 to 1000MHz)</td>
<td>100</td>
<td>1000</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>NFL18ST207H1A3D</td>
<td>NFL18ST207H1A3B</td>
<td>200 max. (0 to 200MHz)</td>
<td>30 min. (800 to 2000MHz)</td>
<td>100</td>
<td>1000</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>NFL18ST307H1A3D</td>
<td>NFL18ST307H1A3B</td>
<td>300 max. (0 to 300MHz)</td>
<td>30 min. (1200 to 2000MHz)</td>
<td>100</td>
<td>1000</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>NFL18ST507H1A3D</td>
<td>NFL18ST507H1A3B</td>
<td>500 max. (0 to 500MHz)</td>
<td>30 min. (1700 to 2000MHz)</td>
<td>100</td>
<td>1000</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

<Typical capacitance> NFL18ST506H1A3D: 110pF (typ.)
<Typical inductance> NFL18ST506H1A3D: 350nH (typ.)
NFL18ST706H1A3D: 70pF (typ.)
NFL18ST107H1A3D: 50pF (typ.)
NFL18ST207H1A3D: 22pF (typ.)
NFL18ST307H1A3D: 16pF (typ.)
NFL18ST507H1A3D: 10pF (typ.)

- Operating Temperature: -55°C to +125°C (Includes self-heating.)
- Storage Temperature: -55°C to +125°C

4. Standard Testing Condition

 Temperature: Ordinary Temp. / 15°C to 35°C
 Humidity: Ordinary Humidity / 25%RH to 85%RH

- In case of doubt:
 Temperature: 20°C ± 2°C
 Humidity: 60%RH to 70%RH
 Atmospheric pressure: 86 kPa to 106 kPa

5. Style and Dimensions

(Top View)

(Side View)

(Bottom View)

- Equivalent Circuits
- Unit Mass (Typical value) 0.004g
- No Polarity
- Directional Marking
 There are no electrical polarity.
 But there is a directional marking on the top of product to identify inner physical direction.
Spec. No. JENF243D-0008E-01

MURATA MFG.CO., LTD.

6. Marking

In case of polarity marking on the top, coils are placed in upper layer, and capacitor is placed in lower layer.

7. Electrical Performance

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Insertion Loss (I.L.)</td>
<td>Meet item 3.</td>
<td>![Diagram of measurement setup]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insertion Loss = 20 log (E₀ / E₁)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E₀ : Level without FILTER (short)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E₁ : Level with FILTER</td>
</tr>
<tr>
<td>7.2</td>
<td>Insulation Resistance (I.R.)</td>
<td>Voltage : Rated Voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time : 1 minutes max.</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Withstanding Voltage</td>
<td>Products shall not be damaged.</td>
<td>Test Voltage : 30V(DC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time : 1 to 5s</td>
<td>Charge Current : 50 mA max.</td>
</tr>
</tbody>
</table>

8. Mechanical Performance

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Appearance and Dimensions</td>
<td>Meet item 5.</td>
<td>Visual Inspection and measured with Slide Calipers.</td>
</tr>
<tr>
<td>8.2</td>
<td>Solderability</td>
<td>Electrodes shall be at least 90% covered with new solder coating.</td>
<td>- Flux : Ethanol solution of rosin, 25(wt)%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Pre-heat : 150 ± 10°C, 60 to 90s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Solder : Sn-3.0Ag-0.5Cu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Solder Temperature : 240 ± 3°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Immersion Time : 3±1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Immersion and emersion rates : 25mm / s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Then measured after exposure in the room condition for 24±2 hours.</td>
</tr>
<tr>
<td>8.3</td>
<td>Resistance to soldering heat</td>
<td>Meet Table 1.</td>
<td>![Table 1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.4 Bending Strength

Meet Table 2.

<table>
<thead>
<tr>
<th>Appearance</th>
<th>No damaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap. Change (%△C)</td>
<td>Within ± 5%</td>
</tr>
</tbody>
</table>

- It shall be soldered on the glass-epoxy substrate (t = 1.0mm).
- Deflection: 2 mm
- Keeping Time: 30 s

![Diagram](image)

8.5 Drop

Products shall be no failure after tested.

- Method: Free fall
- Height: 1m
- Attitude from which the product is dropped: 3 directions
- The Number of Time: 3 times for each direction (Total 9 times)

8.6 Bonding Strength

The electrodes shall be no failure after tested.

- Applying Force (F): 9.8 N
- Applying Time: 30 s

8.7 Vibration

Meet Table 1.

- Oscillation Frequency: 10 to 2000 to 10Hz for 15 minutes
- Total amplitude 3.0mm or Acceleration amplitude 196m/s² whichever is smaller.
- Time: A period of 2 hours in each of 3 mutually perpendicular directions. (Total 6 hours)

9. Environment Performance

It shall be soldered on the glass-epoxy substrate.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
</table>
| 9.1 | Temperature Cycling | Meet Table 1. | 1 Cycle:
1 step: -55 ± 3°C / 30 ± 3 min
2 step: Room Temperature / within 3 min
3 step: +125 ± 3°C / 30 ± 3 min
4 step: Room Temperature / within 3 min
Total of 10 cycles
Then measured after exposure in the room condition for 24±2 hours. |
| 9.2 | Humidity | | Temperature: 40 ± 2°C
Humidity: 90 to 95%(RH)
Time: 500±24 hours
Then measured after exposure in the room condition for 24±2 hours. |
| 9.3 | Heat Life | | Temperature: 125 ± 2°C
Test Voltage: Rated Voltage × 200%
Charge Current: 50 mA max.
Time: 1000 ± 480 hours
Then measured after exposure in the room condition for 24±2 hours. |
10. Specification of Packaging

10.1. Appearance and Dimensions (8 mm-wide paper tape)

10.2. Specification of Taping

(1) Packing quantity (standard quantity)

4000 pcs. / reel

(2) Packing Method

Products shall be packaged in the cavity of the base tape and sealed by top tape and bottom tape.

(3) Sprocket Hole

The sprocket holes are to the right as the tape is pulled toward the user.

(4) Base tape and Top tape

The base tape and top tape have no spliced point.

(5) Cavity

There shall not be burr in the cavity.

(6) Missing components number

Missing components number within 0.1% of the number per reel or 1 pc., whichever is greater, and are not continuous. The specified quantity per reel is kept.

10.3. Pull Strength of Top Tape and Bottom Tape

<table>
<thead>
<tr>
<th>Top tape</th>
<th>Bottom tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>5N min.</td>
<td></td>
</tr>
</tbody>
</table>

10.4. Peeling off force of top tape

0.1N to 0.6N (minimum value is typical)

Speed of Peeling off: 300 mm / min

10.5. Dimensions of Leader-tape, Trailer and Reel

There shall be leader-tape (top tape and empty tape) and trailer-tape (empty tape) as follows.
10.6. Marking for reel
Customer part number, MURATA part number, Inspection number(∗1), RoHS marking(∗2), Quantity, etc

∗1) « Expression of Inspection No. »
(1) Factory Code
(2) Date
First digit : Year / Last digit of year
Second digit : Month / Jan. to Sep. → 1 to 9, Oct. to Dec. → O, N, D
Third, Fourth digit : Day
(3) Serial No.

∗2) « Expression of RoHS marking »
ROHS – Y (∆)
(1) RoHS regulation conformity parts.
(2) MURATA classification number

10.7. Marking for Outside package (corrugated paper box)
Customer name, Purchasing Order Number, Customer Part Number, MURATA part number, RoHS marking (∗2), Quantity, etc

10.8. Specification of Outer Case

<table>
<thead>
<tr>
<th>Outer Case Dimensions (mm)</th>
<th>Standard Reel Quantity in Outer Case (Reel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>D</td>
</tr>
</tbody>
</table>

∗ Above Outer Case size is typical. It depends on a quantity of an order.

11. Standard Land Dimensions
The chip EMI filter suppresses noise by conducting the high-frequency noise element to ground. Therefore, to get enough noise reduction, feed through holes which is connected to ground-plane should be arranged according to the figure to reinforce the ground-pattern.

< Standard land dimensions for reflow >
- Side on which chips are mounted

<table>
<thead>
<tr>
<th>Small diameter thru hole φ 0.2 ~ 0.3</th>
</tr>
</thead>
</table>

12. ! Caution
Limitation of Applications
Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party’s life, body or property.

(1) Aircraft equipment (2) Aerospace equipment (3) Undersea equipment (4) Power plant control equipment
(5) Medical equipment (6) Transportation equipment(automobiles, trains, ships, etc.) (7) Traffic signal equipment
(8) Disaster prevention / crime prevention equipment (9) Data-processing equipment
(10) Applications of similar complexity or with reliability requirements comparable to the applications listed in the above
13. Notice

Products can only be soldered with reflow.
This product is designed for solder mounting.
Please consult us in advance for applying other mounting method such as conductive adhesive.

13.1. Flux and Solder

<table>
<thead>
<tr>
<th>Flux</th>
<th>Use rosin-based flux. Do not use highly acidic flux (with chlorine content exceeding 0.2(wt)%). Do not use water-soluble flux.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder</td>
<td>Use Sn-3.0Ag-0.5Cu solder</td>
</tr>
<tr>
<td>Other flux</td>
<td>(except above) Please contact us for details, then use.</td>
</tr>
</tbody>
</table>

13.2. Note for Assembling

< Thermal Shock >
Pre-heating should be in such a way that the temperature difference between solder and products surface is limited to 100°C max. Also, cooling into solvent after soldering should be in such a way that the temperature difference is limited to 100°C max.

13.3. Attention Regarding P.C.B. Bending

The following shall be considered when designing P.C.B.'s and laying out products.
(1) P.C.B. shall be designed so that products are not subject to the mechanical stress for board warpage.

[Products direction]

```
 Products shall be located in the sideways direction (Length:a< b) to the mechanical stress.
```

(2) Components location on P.C.B. separation.
It is effective to implement the following measures, to reduce stress in separating the board.
It is best to implement all of the following three measures; however, implement as many measures as possible to reduce stress.

<table>
<thead>
<tr>
<th>Contents of Measures</th>
<th>Stress Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Turn the mounting direction of the component parallel to the board separation surface.</td>
<td>A > D *1</td>
</tr>
<tr>
<td>(2) Add slits in the board separation part.</td>
<td>A > B</td>
</tr>
<tr>
<td>(3) Keep the mounting position of the component away from the board separation surface.</td>
<td>A > C</td>
</tr>
</tbody>
</table>

*1 A > D is valid when stress is added vertically to the perforation as with Hand Separation. If a Cutting Disc is used, stress will be diagonal to the PCB, therefore A > D is invalid.

(3) Mounting Components Near Screw Holes
When a component is mounted near a screw hole, it may be affected by the board deflection that occurs during the tightening of the screw. Mount the component in a position as far away from the screw holes as possible.

13.4. Pre-heating Temperature
Soldering shall be handled so that the difference between pre-heating temperature and solder temperature shall be limited to 100°C max. to avoid the heat stress for the products.
13.5. Reflow Soldering
1) Soldering paste printing for reflow
 - Standard thickness of solder paste: 100µm to 150µm.
 - Use the solder paste printing pattern of the right pattern.
 - For the resist and copper foil pattern, use standard land dimensions.

2) Soldering Conditions
 Standard soldering profile and the limit soldering profile is as follows. The excessive limit soldering conditions may cause leaching of the electrode and / or resulting in the deterioration of product quality.

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Standard Profile</th>
<th>Limit Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heating</td>
<td>150°C ~ 180°C , 90s ± 30s</td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td>above 220°C , 30s ~ 60s</td>
<td>above 230°C , 60s max.</td>
</tr>
<tr>
<td>Peak temperature</td>
<td>245°C ± 3°C</td>
<td>260°C , 10s</td>
</tr>
<tr>
<td>Cycle of reflow</td>
<td>2 times</td>
<td>2 times</td>
</tr>
</tbody>
</table>

13.6. Reworking with Soldering iron
 The following conditions shall be strictly followed when using a soldering iron.
 - Pre-heating : 150°C, 1 min
 - Tip temperature : 350°C max.
 - Soldering time : 3(+1,-0) s
 - Soldering output : 30W max.
 - Tip diameter : φ3mm max.
 - Times : 2times max.

 Note : Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the ceramic material due to the thermal shock.

13.7. Solder Volume
 Solder shall be used not to be exceeded as shown below.

 Accordingly increasing the solder volume, the mechanical stress to product is also increased. Excessive solder volume may cause the failure of mechanical or electrical performance.
13.8. Cleaning Conditions

Products shall be cleaned on the following conditions.

1. Cleaning temperature shall be limited to 60°C max. (40°C max. for Isopropyl alcohol (IPA))
2. Ultrasonic cleaning shall comply with the following conditions, with avoiding the resonance phenomenon at the mounted products and P.C.B.
 - Power: 20W / l max.
 - Frequency: 28kHz to 40kHz
 - Time: 5 minutes max.
3. Cleaner
 1. Isopropyl alcohol (IPA)
 2. Aqueous agent
 - PINE ALPHA ST-100S
4. There shall be no residual flux and residual cleaner after cleaning.
 - In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in order to remove the cleaner.
5. Other cleaning
 - Please contact us.

13.9. Operating Environment

Do not use this product under the following environmental conditions, on deterioration of the performance, such as insulation resistance may result from the use.

1. in the corrodible atmosphere (acidic gases, alkaline gases, chlorine, sulfur gases, organic gases and etc.)
2. in the atmosphere where liquid such as organic solvent, may splash on the products.
3. in the atmosphere where the temperature / humidity changes rapidly and it is easy to dew.

13.10. Resin coating

The capacitance and inductance value may change and/or it may affect on the product's performance due to high cure-stress of resin to be used for coating / molding products. So please pay your careful attention when you select resin. In prior to use, please make the reliability evaluation with the product mounted in your application set.

13.11. Handling of a substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate.

Excessive mechanical stress may cause cracking in the product.

Bending Twisting

13.12. Storage condition

1. Storage period
 - Use the products within 12 months after delivered.
 - Solderability should be checked if this period is exceeded.
2. Storage environment condition
 - Products should be stored in the warehouse on the following conditions.
 - Temperature : -10 to +40°C
 - Humidity : 15 to 85% relative humidity
 - No rapid change on temperature and humidity
 - Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.
 - Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.
 - Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.
 - Products should be stored under the airtight packaged condition.
3. Delivery
 - Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

14. Note

1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
2. You are requested not to use our product deviating from the reference specifications.
3. The contents of this reference specification are subject to change without advance notice. Please approve our product specifications or transact the approval sheet for product specifications before ordering.