

Datasheet of SAW Device

SAW Single Filter for ISM2.4G / Unbalanced / 5pin /1411

Murata PN: SAFEA2G45MA0F0A

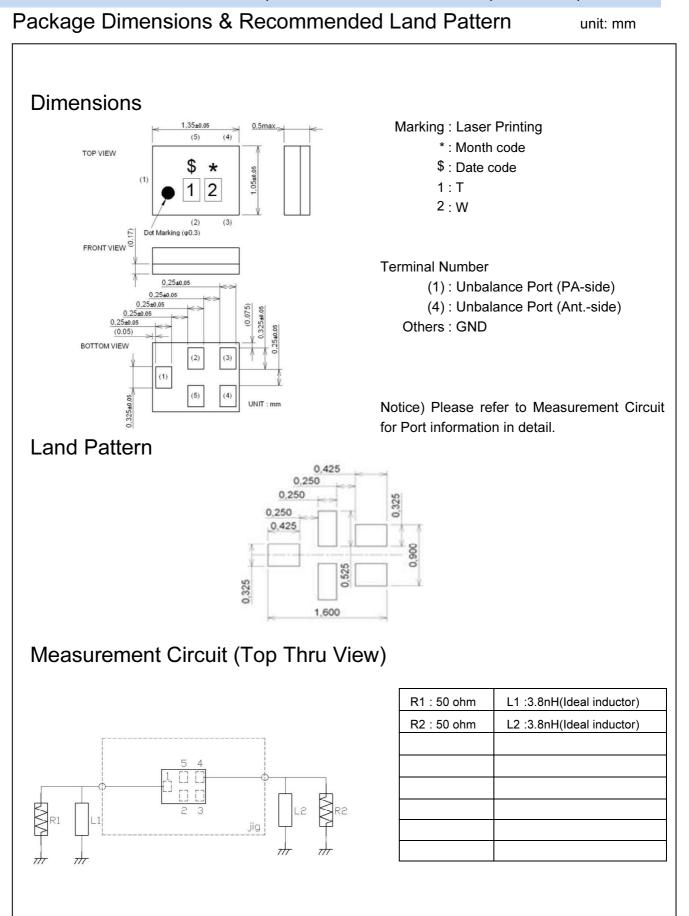
Feature

Coexistence AXGP

Coexistence UQWiMAX

Note : This Murata SAW Component is Consumer grade product and applicable for Cellular phone or similar end devices. Please also read Important Notice at the end of this document.

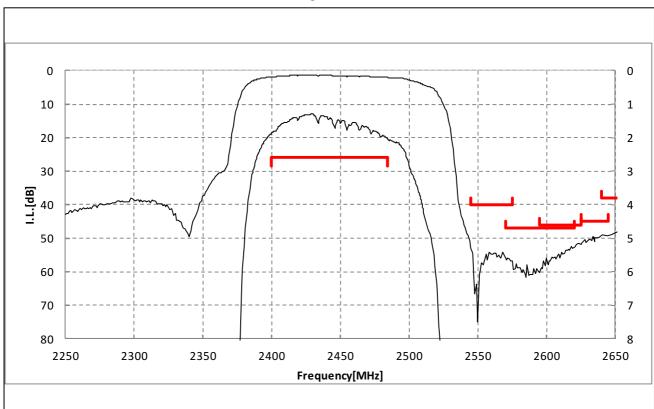
0					
G					



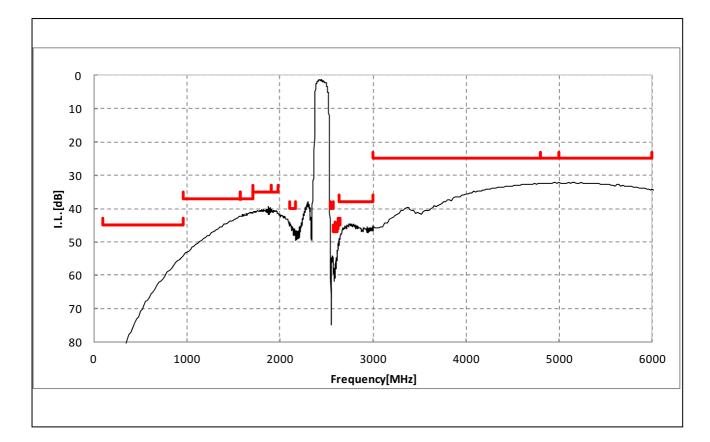
General Information

- Operating temperature	: -30 to +85 deg.C					
- Storage temperature	: -40 to +85 deg.C					
- Input Power	: +28 dBm 20000 h +55 deg.C					
	(*)Input signal shall be applied to Terminal number(1).					
- D.C. Volatage between the terminals	: 3V (25+/-2 deg.C)					
- Minimum Resistance between the terminals	: 10M ohm					
- RoHS compliance	: Yes					
- ESD (ElectroStatic Discharge) sensitive device						

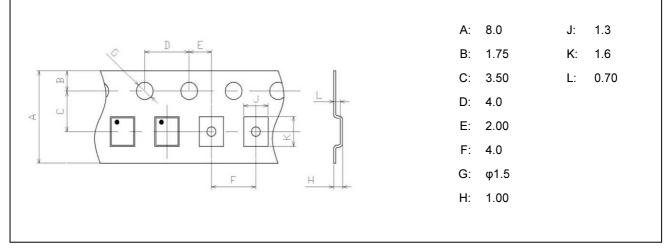
The input power shall be applied to Tx-port within own Tx passband frequency range.

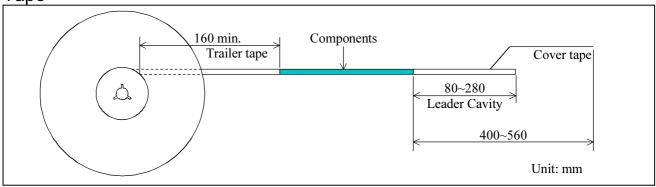

Electrical Characteristic < Single Filter >

Item (-30 to +85 deg.C) Unit Note Center Frequency min. typ.* max. Note Description Loss 2400. to 2484. MHz 1.9 2.6 dB Ripple Deviation 2400. to 2484. MHz 1.9 2.3 dB +23 to +27 deg.C Ripple Deviation 2400. to 2484. MHz 0.6 1.8 dB /SWR 2400. to 2484. MHz 0.6 1.3 dB +23 to +27 deg.C /SWR 2400. to 2484. MHz 1.5 2.1		Tacter	1311		Jingi				1	1
Instruct Image Image <thimage< th=""> Image Image <</thimage<>						Characteristics				
2-Inter Frequency 2-442 MHz MHz nsertion Loss 2400. to 2444. MHz 1.9 2.6 dB +23 to +27 deg.C Sipple Deviation 2400. to 2444. MHz 0.6 1.3 dB +23 to +27 deg.C SWR 2400. to 2444. MHz 0.6 1.3 dB +23 to +27 deg.C SWR 2400. to 2444. MHz 1.5 1.9 +23 to +27 deg.C SWR 2400. to 2444. MHz 1.5 1.9 +23 to +27 deg.C Jbsolute Attenuation 0.1 10 960. MHz 37 43 dB 1580. to 1570. MHz 37 43 dB		ltem						Unit	Note	
2400. by 2484. MHz 1.9 2.6 dB					min.		max.			
2400 10 2484 MHz 19 2.3 48 +23 to +27deg.C Sipple Deviation 2400 10 2484 MHz 0.6 1.8 48 2400 10 2484 MHz 1.5 1.9 +23 to +27deg.C SWR 2400 10 2484 MHz 1.5 1.9 +23 to +27deg.C 2400 10 2484 MHz 1.5 1.9 +23 to +27deg.C 2400 10 2484 MHz 1.5 1.9 +23 to +27deg.C 2400 10 560 MHz 37 43 48 1550 10 1580.0 MHz 37 43 48 1610 10 10 1.4 40 53 48 2545 10 2575. MHz 47 52 48 2551 10 2252. MHz 45 48 48 2550 10 2255. MH	Center Frequency						2442		MHz	
2400 10 2444 MH2 0.6 1.8 0B 2 /SWR 2400 10 2444 MH2 1.5 2.1 +23 to +27 deg C /SWR 2400 10 2444 MH2 1.5 2.1 +23 to +27 deg C /SWR 2400 10 2444 MH2 1.5 1.9 +23 to +27 deg C /Absolute Attenuation 0.1 10 960 MH2 37 43 dB 1570 10 1580 MH2 37 43 dB	Insertion Loss		to							
2400 to 2484 MHz 0.6 1.3 dB +23 to +27deg.C /SWR 2400 to 2484. MHz 1.5 1.9 +23 to +27deg.C Absolute Attenuation 10 0.960. MHz 45 55 dB 10 0.960. MHz 37 43 dB			to						dB	+23 to +27deg.C
JSWR 2400 10 2444 MHz 15 2.1 Product Absolute Attenuation 0.1 10 960 MHz 15 19 + 23 to +27 deg C Absolute Attenuation 0.1 10 960 MHz 37 43 0B 1570 10 150 MHz 37 43 0B 1570 10 170 MHz 37 43 0B 1710 10 1910 MHz 35 40 0B 2545 10 2576 MHz 40 45 0B 2545 10 2576 MHz 40 53 0B 2430 2546 10 2570 10 2263 MHz 45 48 0B 2550 10 2626 MHz 45 31 0B 2626 MHz 45 31 0B 10 10 2625 10 26	Ripple Deviation		to					1.8		
2400 10 2444 MHz 15 19 +23 to +27deg.C bbsolute Attenuation 960 10 1570 MHz 37 43 48 1570 10 1580 MHz 37 43 48 1570 10 1580 MHz 37 43 48 1570 10 1580 MHz 37 43 48 1710 10 1910 10 170 MHz 37 43 48 1910 10 170 MHz 35 41 48 16 2545 10 257 MHz 47 52 48 16 2545 10 258 142 45 48 48 48 2640 10 3000 MHz 28 45 48 2655 10 2846 MHz 25 31 48 3000 10 4600 MHz <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>dB</td> <td>+23 to +27deg.C</td>									dB	+23 to +27deg.C
2400 to 243 v +23 to +23	VSWR						1.5			
960. io 1570. MHz 37 43 dB 1570. to 1580. MHz 37 43 dB 1710. MHz 37 43 dB					MHz			1.9		+23 to +27deg.C
1570. 10 MHz 37 43 d8 1580. 0 710. MHz 35 40 d8 1710. 10 1910. MHz 35 40 d8 1910. 10 1980. MHz 40 45 d8 2110. 10 2170. MHz 40 45 d8 2545. to 2575. MHz 40 53 d8 +23 to +27 deg C 2595. to 2625. MHz 46 51 d8 2646. to 2500. MHz 46 51 d8 2640. to 2600. MHz 45 d8 d8 2640. to 2600. MHz 25 31 d8 50 2640. to 6000. MHz 25 31 d8 50 3000. to 6000. MHz 25 31 d8 50 10 10 10 10 10 10 10 10	Absolute Attenuation		to						dB	
1580. io 1710. MHz 35 40 dB 1910. to 1980. MHz 35 41 dB 2110. to 1980. MHz 40 45 dB 2110. to 2775. MHz 40 45 dB 2545. to 2575. MHz 47 52 dB 2570. to 2520. MHz 47 52 dB 2625. MHz 45 38 dB 2622. 26243. MHz 25 31 dB 3000. to 480. 2640. to 3000. MHz 25 31 dB 3000. to 5000. MHz 25 31 dB 4800. to 5000. MHz 25 31 dB 4800. to 5000. MHz 25 31 dB 4600. to			to							
1710. to 1910. MHz 35 40 dB 1910. to 1900. MHz 40 45 dB 2545. to 2575. MHz 40 63 dB 2545. to 2576. MHz 45 53 dB +23 to +27 deg.C 2550. to 2625. MHz 46 51 dB 2655. to 2645. MHz 245 dB 2645. MHz 25 32 dB 2645. MHz 25 32 dB 2640. to 3000. MHz 25 31 dB 3000. to 4800. MHz 25 31 dB 5000. to 6000. MHz 25 31 dB 5000. to 6000. MHz 25 31 dB 5000. to 6000. MHz 25 31 dB 5000. to 600. MHz 25 31 <td></td> <td></td> <td>to</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			to							
1910. 10 1980. MHz 40 45 dB 2545. to 2575. MHz 40 63 dB +23 to +27 deg.C 2545. to 2575. MHz 47 52 dB +23 to +27 deg.C 2595. to 2625. MHz 47 52 dB +23 to +27 deg.C 2585. to 2625. MHz 45 48 dB +23 to +27 deg.C 2525. to 2625. MHz 25 31 dB +23 to +27 deg.C 2500. to 3000. MHz 25 31 dB +23 to +27 deg.C 3000. to 4800. MHz 25 31 dB +400. 400. to 5000. MHz 25 31 dB +400. 5000. MHz 25 31 dB +400. +400. 6000. MHz 25 31 dB +400. +400. 6000. MHz 25 31 dB +400.			to							
2110. to 2170. MHz 40 45 dB 2545. to 2575. MHz 45 53 dB +23 to +27deg.C 2570. to 2620. MHz 47 52 dB +23 to +27deg.C 2595. to 2645. MHz 46 51 dB 2645. to 2625. MHz 45 dB			to							
2545 to 2575 MHz 45 53 dB +23 to +27 deg.C 2570 to 2620 MHz 47 52 dB 2595 to 2625 MHz 46 51 dB 2625. to 2645 MHz 45 48 dB 2625. to 2645 MHz 25 32 dB 3000. to 4800. MHz 25 31 dB 3000. to 8000. MHz 25 31 dB 4800. to 5000. MHz 25 31 dB 5000.			to							
2545. to 2270. to 2220. MHz 47 522. dB 2595. to 2220. MHz 46 51 dB 2625. to 2264. MHz 48 dB 2646. to 2264. MHz 48 dB 2646. to 2000. MHz 38 45 dB 2640. to 3000. MHz 25 32 dB dB 3000. to 4800. to 5000. MHz 25 31 dB 4800. to 6000. MHz 25 31 dB dB 5000. to 6000. MHz 25 31 dB dB 4800. to 6000. MHz 25 31 dB dB 490. to to to to to to to 490. to to to to to to to to 400. to			to							
2570. 10 2625 MHz 47 52 dB 2695. to 2645. MHz 45 48 dB 2640. to 3000. MHz 25 31 dB 3000. to 4800. MHz 25 31 dB 4800. to 5000. MHz 25 31 dB 5000. to 6000. MHz 25 31 dB 5000. to to 10 10 10 5000. to to 10 10 10 5000. to to 10 10			to							
2595. to 2645. MHz 46 51 dB 2640. to 3000. MHz 38 45 dB 3000. to 4800. MHz 25 32 dB 4800. to 5000. MHz 25 31 dB 4800. to 6000. MHz 25 31 dB 5000. to to to to to to 5000. to to to to to to 5000. to to to to to to to 5000. to				2575.			53			+23 to +27deg.C
2825. to 2846. MHz 45 48 dB 2640. to 3000. MHz 28 45 dB 3000. to 4800. MHz 25 31 dB 4800. to 5000. MHz 25 31 dB 5000. to 6000. MHz 6000. MHz 6000. MHz 5000. to 6000. MHz 6000. MHz 6000. MHz 5000. to 6000. MHz 6000. MHz <			to							
2640. to 3000. MHz 38 45 dB 3000. to 4800. MHz 25 32 dB 4800. to 5000. MHz 25 31 dB 5000. to 6000. MHz 25 31 dB 5000. to to 1 1 1 5000. to to 1 1 1 5000. to to 1 1 1 1 <td></td>										
3000. to 4800. MHz 25 31 dB 4800. to 5000. MHz 25 31 dB 5000. to 6000. MHz 25 31 dB 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
4800. 10 5000. MHz 25 31 dB 5000. 10 6000. MHz 25 31 dB 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10										
5000. MHz 25 31 dB			to							
			to							
Image: state of the state of		5000.	to	6000.	MHz	25	31		dB	
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: Section of the section of th										
Image: state of the state of										
Image: set of the										
Image: Section of the section of th										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
Image: state of the state of										
							L	L		
							ļ	ļ		
										ļ
Image: state of the state										
Image: state of the state										
Image: state of the state							ļ	ļ		
							ļ	ļ		

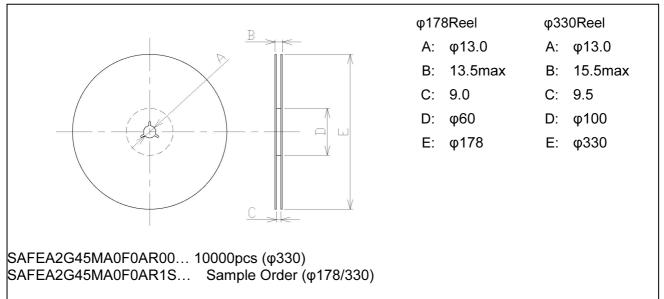

* Typical value at 25±2deg.C

Electrical Characteristic


< Single Filter >



Dimensions of Tape & Reel unit: mm


Carrier Tape

Tape

Reel

Important Notice (1/2)

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product specified in the front page of this product specifications (the "Product" or "Products") when our Product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our Product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our Product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the Product is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such Products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The Product shall not be used for any application which requires especially high reliability or accuracy in order to prevent defect which incurs high possibility of damage to the third party's life, body or property such as the applications listed below as item (a) to (j) (the "Prohibited Application"). You acknowledge and agree that, if you use our Products in the Prohibited Applications, we will not be responsible for any damage caused by such use.

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN THE PROHIBITED APPLICATIONS.

- (a) Aircraft equipment.
- (b) Aerospace equipment
- (c) Undersea equipment.
- (d) Power plant control equipment -
- (e) Medical equipment.
- (f) Transportation equipment (vehicles, automotive, trains, ships, etc.).
- (g)Traffic signal equipment.

(h)Disaster prevention / crime prevention equipment.

- (i) Burning / explosion control equipment
- (j) Application of similar complexity and/ or reliability requirements to the applications listed in the above.

For the avoidance of doubt, the Product is not automotive grade, and will not support such requests for automotive as below, also not support other specific requests for automotive.

- AEC-Q200

- PPAP
- IATF16949,VDA6.3
- Zero Defect program
- Long product life cycle
- Automotive 8D failure analysis and report

Important Notice (2/2)

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the Product in molding condition.

This product is ESD (ElectroStatic Discharge) sensitive device. When you install or measure this, you should be careful not to add antistatic electricity or high voltage. Please be advised that you had better check anti serge voltage.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our Products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our Products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use. Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The Product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

•the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the Product to be sold by you,

·deviation or lapse in function of engineering sample,

•improper use of engineering samples.

We disclaim any liability for consequential and incidental damages. If you can't agree the above contents, you should inquire our sales.