

Datasheet of SAW Device

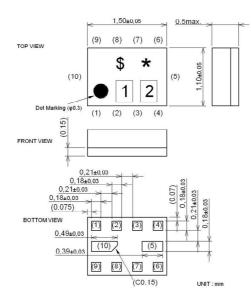
SAW Dual Filter for Band38_Band40 / 1in2out Unbalanced / LH /1511

Murata PN: SAWFD2G35KA0F0A

Note : This Murata SAW Component is Consumer grade product and applicable for Cellular phone or similar end devices. Please also read Important Notice at the end of this document.

: -20 to +85 deg.C

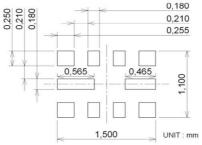
: Yes


General Information

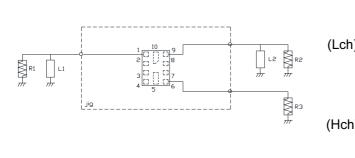
- Operating temperature
- Storage temperature : -40 to +85 deg.C
- Input Power
- : +13 dBm 2000 h - D.C. Volatage between the terminals : 3V (25+/-2 deg.C)
- Minimum Resistance between the terminals : 10M ohm
- RoHS compliance
- ESD (ElectroStatic Discharge) sensitive device

Dimensions

Land Pattern


Marking : Laser Printing

- * : Month code
- \$: Date code
- 1:2
- 2 : C


Terminal Number

- (1): Unbalanced port-Lch/Hch
- (9): Unbalanced port-Lch
- (6): Unbalanced port-Hch
- Others : GND

Notice) Please refer to Measurement Circuit for Port information in detail.

Measurement Circuit (Top Thru View)

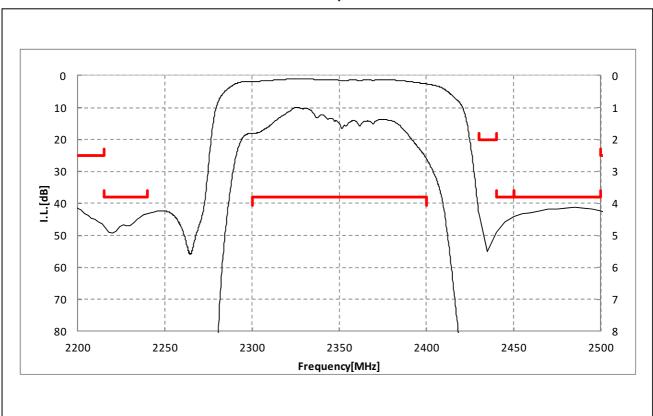
R1 : 50 ohm	L1 :2.7nH(Ideal inductor)
R2 : 50 ohm	L2 :7nH(Ideal inductor)
R3 : 50 ohm	
	R2 : 50 ohm

050

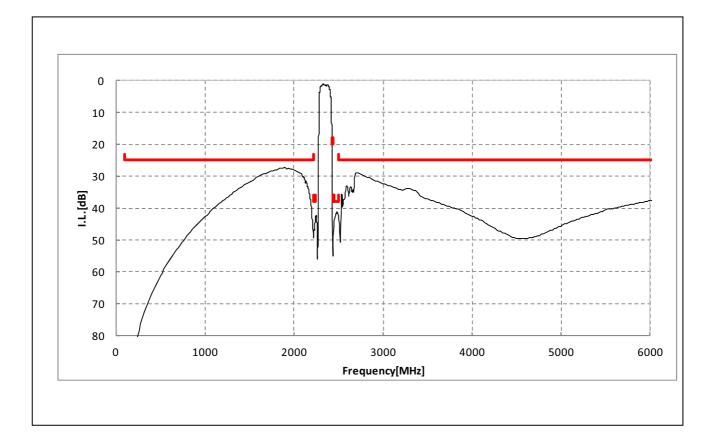
Electrical Characteristic < Low Freq. Filter >

Low Freq. Filter						racteri o +85 d		Unit	Note
					min.	typ.	max.		
Center Frequency						2350		MHz	
Insertion Loss	2300.	to	2400.	MHz		2.6	3.7	dB	
	2300.	to	2400.	MHz		2.6	3.0	dB	+23 to +27deg.C
	2302.5	to	2397.5	MHz		2.4	3.3	dB _{INT}	Any 4.5MHz
Ripple Deviation	2300.	to	2400.	MHz		1.6	3.0	dB	
VSWR	2300.	to	2400.	MHz		1.8	2.0		
Absolute Attenuation	10.	to	2215.	MHz	25	27		dB	
	2215.	to	2240.	MHz	38	43		dB	
	2430.	to	2440.	MHz	20	43		dB	
	2440.	to	2450.	MHz	38	44		dB	
	2450.	to	2500.	MHz	38	41		dB	
	2500.	to	8000.	MHz	25	29		dB	
	L								
	<u> </u>								
								1	
	<u> </u>								
									•

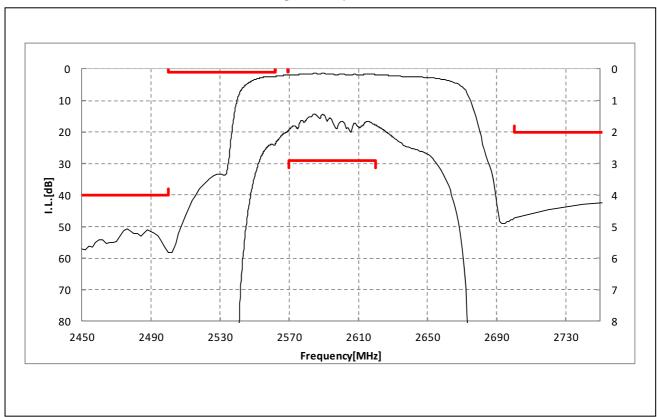
* Typical value at 25±2deg.C


Electrical Characteristic < High Freq. Filter >

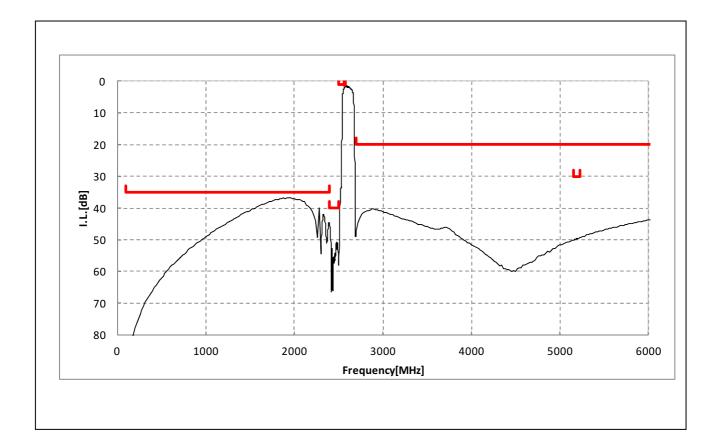
Characteristics Unit Note Contractions Note Contractions Note Contractions Set 5 Mitz Contractions 2575 to 2615 Mitz 2 2 de d		acien	้อแเ		пıgn					
Init Up: max Init Mitz Center Frequency 2875 0 2615 MHz 1						Characteristics			ł	
Center Frequency Page 7 MHz Page 7 insertion Loss 2575. 10. 2615. MHz 2.0 2.4 dB 2577. 10. 2612.5 MHz 2.0 2.4 dB response 2577. 10. 2612.5 MHz 2.3 dB response						-	(-20 to +85 deg.C)		Unit	Note
Insertion Loss 2575 10 2616 MH2 20 22 dB read 25775 10 2810 MH2 20 22 dB +23 to +27 deg.C 25775 10 2820 MH2 23 28 dB +23 to +27 deg.C 2570 to 2820 MH2 21 28 dB +23 to +27 deg.C 2575 to 2817.5 MH2 2.1 2.8 dB +23 to +27 deg.C 2575 to 2815. MH2 1.0 2.0 dB +23 to +27 deg.C 2575. to 2815. MH2 1.0 2.0 dB +23 to +27 deg.C 2575. to 2815. MH2 1.0 2.0 dB +43 to +27 deg.C 2575. to 2816. MH2 1.0 2.0 dB HS HA 2500. MH2 1.0 2.0 dB HS HA HA 10 2.0						min.		max.		
Insertion Loss 2575 to 2615 MHz 2.0 2.2 dB +23 to +27deg.C 2577 to 2512 MHz 2.0 2.3 2.8 MB Any 4.5MHz 2570 to 2520 MHz 2.3 2.8 dB +23 to +27deg.C 2570 to 2520 MHz 2.1 2.8 dB +23 to +27deg.C 2570 to 2520 MHz 1.0 2.0 dB +23 to +27deg.C 2570 to 2520 MHz 1.0 2.0 dB +23 to +27deg.C 2570 to 2820 MHz 1.0 2.0 dB +23 to +27deg.C 2500 to 2800 MHz 1.0 2.0 dB +43 to +27deg.C 2501 to 2802 MHz 1.0 2.0 dB +43 to +27deg.C 2500 to 2805 MHz 1.0 2.0 dB +43 to +27deg.C <t< td=""><td>Center Frequency</td><td></td><td></td><td></td><td></td><td></td><td>2595</td><td></td><td></td><td></td></t<>	Center Frequency						2595			
2577 5 10 2240 MHz 11 2.4 4.69 _{MT} Any 4.5MHz 2570 10 2200 MHz 2.3 2.9 dB -23 to +27/deg C 2570 10 2200 MHz 2.2 2.6 dB +23 to +27/deg C Ripple Deviation 2575 10 10 1.0 2.0 dB 2570 10 226.0 MHz 1.0 2.0 dB 2575 10 2610 MHz 1.7 2.0 dB 2575 10 2620 MHz 1.7 2.0 dB 2570 10 2620 MHz 1.7 2.0 dB SMZ 2500 10 2560 MHz 10 2.0 dB SMZ GMZ 2500 10 2560 MHz 10 2.0 dB SMZ dGHz 2500 10 2560 MHz 30 49 dB 21			to		MHz			2.4		
2577 5 10 282.0 MHz 2.3 2.3 3 B 2570 10 282.0 MHz 2.3 3 B +23 to +27 deg.C 2575 10 282.0 MHz 2.1 2.8 dB +23 to +27 deg.C Ripple Deviation 2575 10 282.0 MHz 1.0 2.0 dB -77 co 10 280 MBz -77 co dB -77 co -78 co -77 co -78 co -77 c			to				2.0	2.2		+23 to +27deg.C
2570 10 2620 MHz 21 22.6 dB +23 to +27 deg.C Ripple Deviation 2575 10 2820 MHz 1.0 1.5 dB 2575 10 2820 MHz 1.0 2.0 dB 2575 10 2820 MHz 1.7 2.0 dB 2575 10 2820 MHz 1.7 2.0 dB 2575 10 2820 MHz 1.7 2.0 dB 2570 10 2820 MHz 1.7 2.0 dB 2600 0 2500 MHz 1.0 2.0 dB B7 X 2500 0 2562 MHz 1.0 2.0 dB End of B7 Tx 2500 10 5230 MHz 30 40 dB 3f 7725 10 7845 MHz 30 40 dB 3f 7725 10 7			to		MHz					Any 4.5MHz
2572.5 10 2617.5 MHz 10 1.5 dBy May Any 4.5MHz Ripple Deviation 2570. to 2820. MHz 1.0 2.0 dB 2570. to 2820. MHz 1.7 2.0 2570. to 2820. MHz 1.7 2.0 2570. to 2820. MHz 1.0 2.0 dB Absolute Attenuation 10 to 2562. MHz 10 2.0 dB B77x 2700. to 2862. MHz 10 2.0 dB End of B7 Tx 2700. to 8000. MHz 20 40 dB 2f 7725. to 7830. MHz 30 40 dB 2f dB End of B7 Tx dB 2f dB 2f<			to							
Ripple Deviation 2575. to 2615. MHz 1.0 1.5 dB VSWR 2576. to 2615. MHz 1.7 2.0 Reserved 2570. to 2620. MHz 1.7 2.0 Reserved			to		MHz					+23 to +27deg.C
2570. 10. 20. ABB VSWR 2576. 10. 20. IT.7 20. 2570. 10. 20.200. MHz 1.7 20. Absolute Attenuation 10. 10.200. MHz 40. 45. dB ISM2.4GHz 200. to 2500. MHz 10. 20. dB DT.x 2500. to 2502. MHz 10. 20. dB DT.x 2500. to 2500. MHz 10. 20. dB End of B7Tx 2700. to 2500. MHz 30. 49. dB 27 2700. to 530. MHz 30. 49. dB 27 7725. to 7845. MHz 30. 40. IB 27 7725. to 7845. MHz 30. ID ID ID ID 7725. to 7845.			to							Any 4.5MHz
VSWR 2575. to 2615. MHz 1.7 2.0 Absolute Attenuation 10. to 2400. MHz 35 37 0 B 2400. to 2500. MHz 10 20 0 2500. 2500. to 252 MHz 10 20 0 B B7Tx 2500. to 2562 MHz 10 20 0 0 D D 20 0 0 D D D 0 0 0 D D D 0 D	Ripple Deviation		to							
2570 to 2620 MHz 35 37 dB Absolute Attenuation 10 to 2400 MHz 35 37 dB B 2400 to 2500 MHz 10 2.0 dB B7 Tx 2500 to 2582 MHz 10 2.0 dB End of B7 Tx 2700 to 8000 MHz 20 dB End of B7 Tx 2700 to 8000 MHz 30 49 dB 2f 2700 to 8000 MHz 30 40 dB 2f 7725 to 7845 MHz 30 40 dB 3f			to						dB	
Absolute Attenuation 10. to 2400. MHz 35 37 dB ISM2.4GHz 2500. to 2562. MHz 10 20 dB B7 Tx 2568. MHz 10 20 dB End of B7 Tx 270. to 800. MHz 30 49 dB 27 2700. to 8000. MHz 30 49 dB 27 Tx 270. to 800.0 MHz 30 49 dB 27 Tx 270. to 800.0 MHz 30 40 dB 27 Tx 270. to 800.0 MHz 30 40 dB 27 Tx Tr	VSWR		to							
2400 to 2500 MHz 10 2.0 dB ISX24GHz 2582 MHz 10 2.0 dB B7 Tx 2700. to 8000 MHz 2.0 dB End of B7 Tx 2700. to 8000 MHz 2.0 dB End of B7 Tx 2700. to 8000 MHz 2.0 dB End of B7 Tx 2700. to 8000 MHz 30 49 dB 2f 7725. to 7845. MHz 30 40 dB 3f								2.0		
2500 to 2562 MHz 1.0 2.0 dB BT 7x 2568 MHz 1.0 2.0 dB End of B7 Tx 2700 to 8000 MHz 20 40 dB 5150 to 5230 MHz 30 49 dB 2f 7725 to 7845 MHz 30 40 dB 3f	Absolute Attenuation		to							
2562 MHz 1.0 2.0 dB End of B7 Tx 2700. to 8000. MHz 20 40 dB 3160. to 5230. MHz 30 49 dB 2f 7725. to 7845. MHz 30 40 dB 3f 7725. to 7845. MHz 30 40 dB 3f 7725. to 7845. MHz 30 40 dB 3f 7725. to 7845. MHz 10 10 10 10 7726. to 10 10 10 10 10 10 10 7726. to 10 10 10 10 10 10 10 10										ISM2.4GHz
2569. MHz 10 2.0 dB End of B7 Tx 2100. to \$300. MHz 30 49 dB 2f 5150. to \$523. MHz 30 40 dB 2f 7725. to 7845. MHz 30 40 dB 3f 7725. to 7845. MHz 30 40 dB 3f 7726. to 7845. MHz 30 40 dB 3f 7728. to 7845. MHz 30 40 dB 3f 7728. to 7845. MHz 30 40 dB 40 7728. to 10 10 10 10 10 10 7728. to 10 10 10 10 10 10 10 7728. to 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <td></td> <td>2500.</td> <td>to</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>B7 Tx</td>		2500.	to							B7 Tx
2700. to 5230. MHz 30 49 dB 27 7725. to 7845. MHz 30 40 dB 37										
5150 io 5230 MHz 30 49 dB 27 7725. io 7845. MHz 30 40 dB 3f		0700								End of B7 1x
7725. 10 7845. MHz 30 40 dB 3f										66
		//25.	to	/845.	MHz	30	40		aВ	্যা
										ļ
Image: set of the										
Image: Sector of the sector										
Image: Sector of the sector										
Image: Sector of the sector										
Image: Sector of the sector										
										<u> </u>


* Typical value at 25±2deg.C

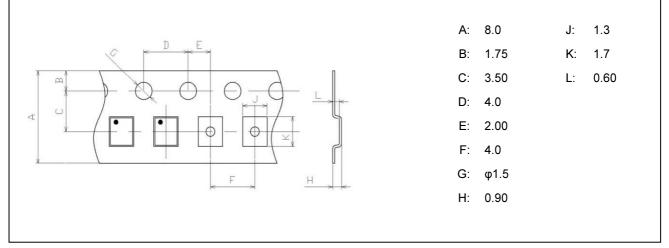
Electrical Characteristic

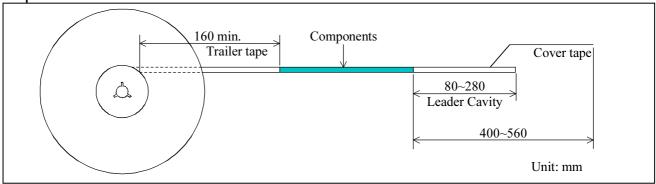


< Low Freq. Filter >

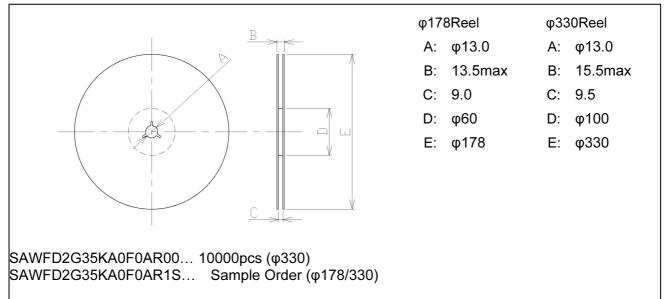


Electrical Characteristic


< High Freq. Filter >



Dimensions of Tape & Reel unit: mm


Carrier Tape

Tape

Reel

Important Notice (1/2)

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product specified in the front page of this product specifications (the "Product" or "Products") when our Product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our Product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our Product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the Product is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such Products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The Product shall not be used for any application which requires especially high reliability or accuracy in order to prevent defect which incurs high possibility of damage to the third party's life, body or property such as the applications listed below as item (a) to (j) (the "Prohibited Application"). You acknowledge and agree that, if you use our Products in the Prohibited Applications, we will not be responsible for any damage caused by such use.

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN THE PROHIBITED APPLICATIONS.

- (a) Aircraft equipment.
- (b) Aerospace equipment
- (c) Undersea equipment.
- (d) Power plant control equipment
- (e) Medical equipment.
- (f) Transportation equipment (vehicles, automotive, trains, ships, etc.).
- (g)Traffic signal equipment.
- (h)Disaster prevention / crime prevention equipment.
- (i) Burning / explosion control equipment
- (j) Application of similar complexity and/ or reliability requirements to the applications listed in the above.

For the avoidance of doubt, the Product is not automotive grade, and will not support such requests for automotive as below, also not support other specific requests for automotive.

- AEC-Q200

- PPAP
- IATF16949,VDA6.3
- Zero Defect program
- Long product life cycle
- Automotive 8D failure analysis and report

Important Notice (2/2)

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the Product in molding condition.

This product is ESD (ElectroStatic Discharge) sensitive device. When you install or measure this, you should be careful not to add antistatic electricity or high voltage. Please be advised that you had better check anti serge voltage.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our Products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our Products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use. Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The Product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

•the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the Product to be sold by you,

·deviation or lapse in function of engineering sample,

• improper use of engineering samples.

We disclaim any liability for consequential and incidental damages. If you can't agree the above contents, you should inquire our sales.