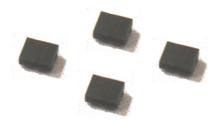


Datasheet of SAW Device

SAW Duplexer

for Band27 / Unbalanced / LR /1814


Murata PN: SAYEY815MBA0F0A

Feature

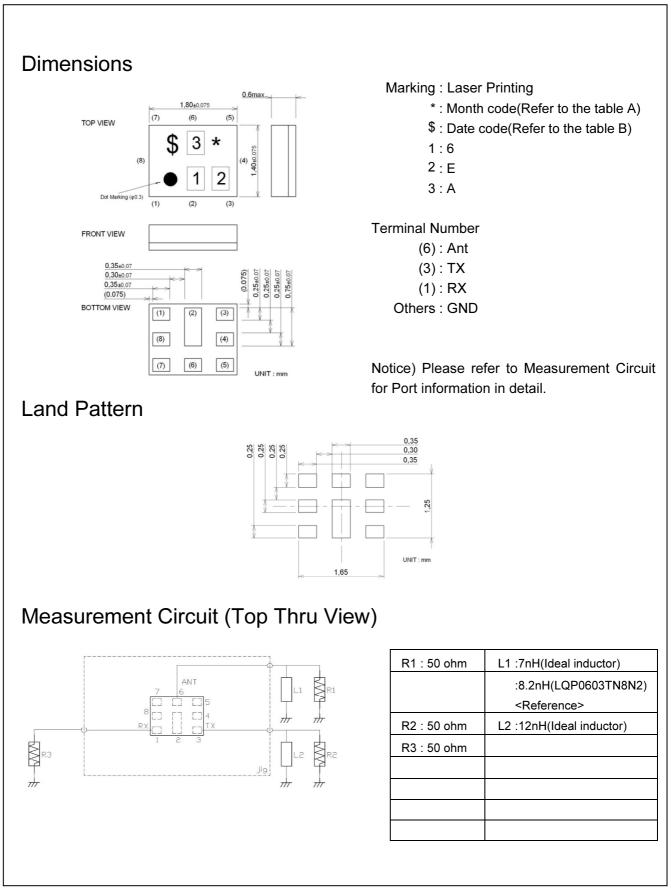
Low Insertion Loss

High Isolation

► LTE-A

Note : Murata SAW Component is applicable for Cellular /Cordless phone (Terminal) relevant market only. Please also read caution at the end of this document.

Revision Number	Date	Description
SAYEY815MBA0F0A_rev. A	Nov-22-2013	■ Initial Release
SAYEY815MBA0F0A_rev. B	Sep-12-2014	■ Updated Specification
SAYEY815MBA0F0A_rev. C	Feb-10-2015	■ Updated for MP
SAYEY815MBA0F0A_rev. D	Sep-04-2015	■ Updated Feature
SAYEY815MBA0F0A_rev. E	Sep-08-2015	■ Updated Feature
SAYEY815MBA0F0A_rev. F	Feb-01-2016	■ Updated Matching Circuit
SAYEY815MBA0F0A_rev. G	Aug-26-2016	Updated General Information
SAYEY815MBA0F0A_rev. H	Aug-04-2017	Updated General Information
SAYEY815MBA0F0A_rev. I	Nov-10-2017	■ Updated SPEC


- Operating temperature
- : -20 to +85 deg.C
- Storage temperature
- : -40 to +85 deg.C

- Input Power

- : +30 dBm 5000 h +50 deg.C
- D.C. Volatage between the terminals
- : 3V (25+/-2 deg.C)
- Minimum Resistance between the terminals \pm 10M ohm : Yes
- RoHS compliance
- ESD (ElectroStatic Discharge) sensitive device

Electrical Characteristic < TX→ANT. >

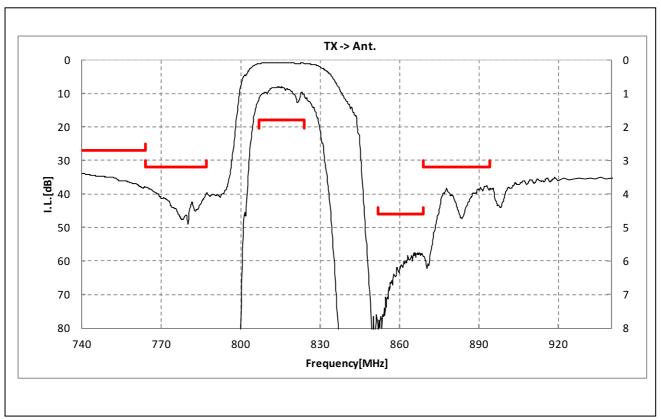
Тх	→ ANT.					racteris to +85 de		Unit	Note
					min.	typ.*	max.		
Center Frequency						815.5		MHz	
Insertion Loss	807.	to	824.	MHz		1.3	1.8	dB	
		to	821.5	MHz		1.1	1.8	dB _{INT}	Any 4.5MHz
Ripple Deviation		to	824.	MHz		0.4	1.2	dB	
VSWR		to	824.	MHz		1.3	2.0		Tx/Ant.
Absolute Attenuation		to	420.	MHz	30	47		dB	
		to	494.	MHz	35	42		dB	450MHz Rx for SHDR
		to	701.	MHz	27 27	33 33		dB dB	
		to	728. 764.	MHz MHz	27	33		dB dB	700MHz Rx for SHDR
		to to	787.	MHz	32	37		dB	
		to	869.	MHz	46	57		dB	Rx
	869.	to	894.	MHz	32	37		dB	B5 Rx
		to	1563.	MHz	40	44		dB	COMPASS
	1565.42	to	1573.37	MHz	40	44		dB	Lower GPS
		to	1577.47	MHz	40	45		dB	Regular GPS
	1577.47	to	1585.42	MHz	40	45		dB	Upper GPS
	1597.55	to	1605.89		40	45		dB	GLONASS
		to	1648.	MHz	30	45		dB	2f
		to	1880.	MHz	30	44		dB	B3 Rx
	1930.	to	1990.	MHz	30	42		dB	B2 Rx
	2110.	to	2170.	MHz	30	40		dB	B1 Rx
		to	2483.	MHz	32	37		dB	ISM2.4, 3f
		to	3296.	MHz	20	32		dB	4f
		to	4120.	MHz	20	28		dB	5f
		to	5950.	MHz	12	19		dB	ISM 5G, 6f, 7f
		to	6592.	MHz	10	22		dB	8f
		to	7416.	MHz	10	32		dB	9f
	8070.	to	8240.	MHz	10	42		dB	10f
		to	9064.	MHz	10	27		dB	11f
	9684.	to	9888. 10712.	MHz	5.0 3.0	15.0 9.0		dB dB	12f
			10712.	MHz	3.0	9.0 10.0			13f 14f
	11298. 12105.		12360.	MHz MHz	3.0	10.0		dB dB	15f
	12105.	to	12000.		5.0	14.0		UD	151
									1

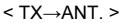
* Typical value at 25±2deg.C

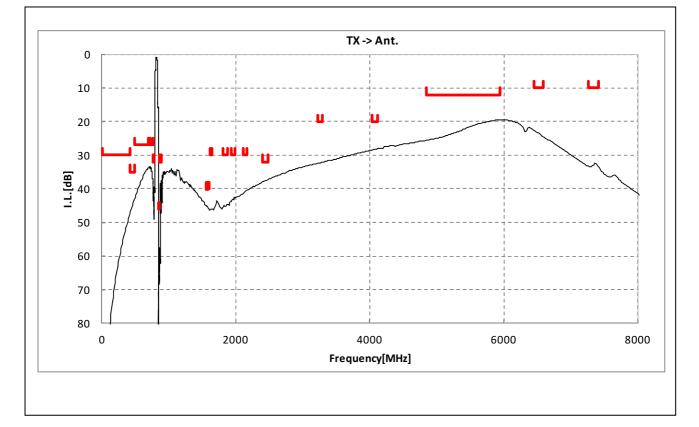
Electrical Characteristic $\langle ANT. \rightarrow RX \rangle$

min. up.* max. MHz insertion Loss 852 to 860.5 MHz 0.00 Ripple Deviation 852.10 869.0 MHz 0.21 0.89 MHz 0.21 0.89 MHz 0.22 0.89 MHz 0.22 12 0.89 MHz 0.22 0.89 MHz 0.22 0.89 MHz 0.22 12 0.8 MHz 0.00 RexAnt. Absolute Attenuation 10. 0.447 MHz 45 61 dB MT 45 61 dB MT 45 61 dB MT 45 65 dB Rx + Tx 10 10 10 10 MHz 45 65 dB 17 10 170 10 785 MHz 45 65 dB 81 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th></th> <th>Ant→Rx</th> <th>011</th> <th><u> </u></th> <th></th> <th>Cha</th> <th>racteria to +85 d</th> <th>stics eg.C)</th> <th>Unit</th> <th>Note</th>		Ant→Rx	011	<u> </u>		Cha	racteria to +85 d	stics eg.C)	Unit	Note
Insertion Loss 852 to 869 MHz 1.5 2.0 dB Ripple Deviation 852 to 866.5 MHz 1.4 2.0 dB _{INT} Any 4.5MHz Ripple Deviation 852 to 869. MHz 1.5 2.0 Rx/Ant. Absolute Attenuation 10. to 447. MHz 45 61 dB 762 to 779. MHz 40 53 dB Tx 807. to 779. MHz 46 58 dB Tx 829.5 to 846.5 MHz 1.2 3.3 dB (Rx + Tx) / 2 884. to 954. MHz 1.2 6.0 dB B3 / 4 Tx 1710. to 1785. MHz 45 65 dB 212 1850. to 1780. MHz 45 65 dB B3 / 4 Tx 1710. to 1788. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>min.</td> <td>typ.*</td> <td>max.</td> <td></td> <td></td>						min.	typ.*	max.		
Bit is the second sec							860.5			
Ripple Deviation 852. to 869. MHz 0.2 1.2 dB VSWR 852. to 869. MHz 1.5 2.0 Rx/Ant. Absolute Attenuation 10. to 447. MHz 45 61 dB 447. to 779. MHz 40 53 dB Rx - Tx 447. to 779. MHz 40 53 dB Rx - Tx 447. to 779. MHz 45 55 dB 2Tx - Rx 807. to 824. MHz 46 58 dB Tx 829.5 to 846.5 MHz 1.2 6.0 dB B3 / 4 Tx 1659. to 1693. MHz 45 65 dB B3 / 4 Tx 1704. to 1738. MHz 45 69 dB B2 Tx 1920. to 2400.	Insertion Loss									
VŠWR 852. to 869. MHz 1.5 2.0 Rx/Ant. Absolute Attenuation 10. to 447. MHz 45 61 dB 447. to 779. MHz 45 99 dB Rx - Tx 447. to 779. MHz 45 55 dB 2Tx - Rx 807. to 824. MHz 1.2 6.0 dB BX - Tx 807. to 824. MHz 1.2 6.0 dB BX + Tx 1659. to 1683. MHz 1.2 6.0 dB B3 / 4 Tx 1704. to 1738. MHz 45 65 dB B3 / 4 Tx 1704. to 1780. MHz 45 68 dB B2 Tx 1920. to 1980. MHz 45 69 dB B1 Tx 1980. to 2400. MHz 50										Any 4.5MHz
Absolute Attenuation 10. to 447. MHz 45 61 dB 447. to 779. MHz 50 99 dB Rx - Tx 447. to 779. MHz 40 53 dB 2Tx - Rx 807. to 824. MHz 46 58 dB Tx 829.5 to 846.5 MHz 1.2 3.3 dB (Rx + Tx) / 2 884. to 954. MHz 1.2 6.0 dB B8 Tx 1659. to 1693. MHz 45 64 dB Rx + Tx 1710. to 1785. MHz 45 65 dB 2f 1850. to 1920. MHz 45 68 dB B2 Tx 1920. to 1980. MHz 50 63 dB B30 Tx 2305. to 2315. MHz 50 63									dB	
45.MHz5099dBRx - Tx447.to779.MHz4053dB762.to779.MHz4555dB2Tx - Rx807.to824.MHz4658dBTx829.5to846.5MHz1.23.3dB(Rx + Tx) / 2884.to954.MHz1.26.0dBB8 Tx1659.to1693.MHz4564dBRx + Tx1710.to1785.MHz4565dBB3 / 4 Tx1704.to1788.MHz4565dBB2 Tx1920.to1920.MHz4568dBB1 Tx1980.to2400.MHz5064dB2305.to2315.MHz5065dBB30 Tx2400.to2500.MHz5063dBISM2.42511.to2502.MHz5060dBRx + 2Tx2556.to2607.MHz3041dBISM 5G, 6f3964.to3476.MHz2540dB8f400.to5950.MHz3041dBISM 5G, 6f5964.to683.MHz2540dB8f6816.to7821.MHz2540dB8f6816.to6952.						AE		2.0	40	Rx/Ant.
447.to779.MHz4053dB762.to779.MHz4555dB2Tx - Rx807.to824.MHz4658dBTx829.5to846.5MHz1.23.3dB(Rx + Tx) / 2884.to954.MHz1.26.0dBB8 Tx1659.to1693.MHz4564dBRx + Tx1710.to1785.MHz4565dBB3 / 4 Tx1704.to1738.MHz4568dBB2 Tx1850.to1920.MHz4569dBB1 Tx1920.to1980.MHz4569dBB1 Tx1980.to2400.MHz5064dBTx2305.to2315.MHz5063dBISM 2.42400.to2500.MHz5063dBRx + 2Tx2566.to2607.MHz5060dBRf3408.to3476.MHz4559dB4f4260.to4345.MHz3041dBISM 5G, 6f5964.to6952.MHz2540dB8f4900.to5950.MHz3041dBISM 5G, 6f5964.to6952.MHz2540dB8f	Absolute Attenuation	10.	to							Py _ Ty
762.to779.MHz4555dB $2Tx - Rx$ 807.to824.MHz4658dBTx829.5to846.5MHz1.23.3dB $(Rx + Tx) / 2$ 884.to954.MHz1.26.0dBB8 Tx1659.to1693.MHz4564dBRx + Tx1710.to1785.MHz4565dBB3 / 4 Tx1704.to1738.MHz4565dBB2 Tx1920.to1980.MHz4569dBB1 Tx1980.to2400.MHz5064dB2305.to2315.MHz5065dBB30 Tx2400.to2500.MHz5063dBRx + 2Tx2556.to2607.MHz5060dB3f3408.to3476.MHz4559dB4f4260.to4345.MHz4061dB5f4900.to5950.MHz3041dBISM 5G, 6f5964.to6952.MHz2539dB7f6816.to6952.MHz2540dB8f7668.to7821.MHz2540dB8f7668.to7821.MHz2540dB11f10224		447	to							
807.to $824.$ MHz 46 58 dBTx 829.5 to 846.5 MHz 1.2 3.3 dB $(Rx + Tx)/2$ $884.$ to $954.$ MHz 1.2 6.0 dBB8 Tx $1659.$ to $1693.$ MHz 45 64 dB $Rx + Tx$ $1710.$ to $1785.$ MHz 45 65 dBB3 / 4 Tx $1704.$ to $1738.$ MHz 45 65 dBB2 / tx $1850.$ to $1920.$ MHz 45 69 dBB1 Tx $1920.$ to $1980.$ MHz 45 69 dBB1 Tx $1920.$ to $1980.$ MHz 45 69 dBB1 Tx $1920.$ to $1980.$ MHz 50 64 dB $2305.$ to $2315.$ MHz 50 63 dBB30 Tx $2400.$ to $2560.$ MHz 50 60 dB $Rx + 2Tx$ $2556.$ to $2607.$ MHz 50 60 dB $3f$ $3408.$ to $3476.$ MHz 45 59 dB $4f$ $4260.$ to $4345.$ MHz 40 61 dB $5f$ $4900.$ to $5950.$ MHz 30 41 dB 15 $4900.$ to $5950.$ MHz 25 39 dB $7f$ $6816.$ to $6952.$ MHz 25 40										2Tx - Rx
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				824.		46			dB	Tx
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		829.5				1.2			dB	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
1980. to 2400. MHz 50 64 dB 2305. to 2315. MHz 50 65 dB B30 Tx 2400. to 2500. MHz 50 63 dB ISM2.4 2511. to 2562. MHz 50 60 dB Rx + 2Tx 2556. to 2607. MHz 50 60 dB 3f 3408. to 3476. MHz 45 59 dB 4f 4260. to 4345. MHz 40 61 dB 5f 4900. to 5950. MHz 30 41 dB ISM 5G, 6f 5964. to 6083. MHz 25 39 dB 7f 6816. to 6952. MHz 20 43 dB 9f 8520. to 8690. MHz 15 44 dB 10f <										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									-	В30 Тх
2556. to 2607. MHz 50 60 dB 3f 3408. to 3476. MHz 45 59 dB 4f 4260. to 4345. MHz 40 61 dB 5f 4900. to 5950. MHz 30 41 dB ISM 5G, 6f 5964. to 6083. MHz 25 39 dB 7f 6816. to 6952. MHz 20 43 dB 9f 8520. to 8690. MHz 15 44 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f						50			dB	
3408. to 3476. MHz 45 59 dB 4f 4260. to 4345. MHz 40 61 dB 5f 4900. to 5950. MHz 30 41 dB ISM 5G, 6f 5964. to 6083. MHz 25 39 dB 7f 6816. to 6952. MHz 25 40 dB 8f 7668. to 7821. MHz 20 43 dB 9f 8520. to 8690. MHz 15 44 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f					MHz	50			dB	
4260. to 4345. MHz 40 61 dB 5f 4900. to 5950. MHz 30 41 dB ISM 5G, 6f 5964. to 6083. MHz 25 39 dB 7f 6816. to 6952. MHz 20 43 dB 9f 7668. to 7821. MHz 20 43 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f			to							
4900. to 5950. MHz 30 41 dB ISM 5G, 6f 5964. to 6083. MHz 25 39 dB 7f 6816. to 6952. MHz 25 40 dB 8f 7668. to 7821. MHz 20 43 dB 9f 8520. to 8690. MHz 15 44 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f										
5964. to 6083. MHz 25 39 dB 7f 6816. to 6952. MHz 25 40 dB 8f 7668. to 7821. MHz 20 43 dB 9f 8520. to 8690. MHz 15 44 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f										
6816. to 6952. MHz 25 40 dB 8f 7668. to 7821. MHz 20 43 dB 9f 8520. to 8690. MHz 15 44 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f										
7668. to 7821. MHz 20 43 dB 9f 8520. to 8690. MHz 15 44 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f										
8520. to 8690. MHz 15 44 dB 10f 9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f										
9372. to 9559. MHz 15 44 dB 11f 10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f										
10224. to 10428. MHz 15 40 dB 12f 11076. to 11297. MHz 15 42 dB 13f						15			dB	
			to			15			dB	
11928. to 12166. MHz 15 36 dB 14f										
Image: state of the state of		11928.	to	12166.	MHz	15	36		dB	14f
Image: state of the state of										
Image: state of the state of										
Image: sector of the sector										
Image: state of the state of										
Image: set of the										
Image: set of the										
Image: set of the										
Image: state of the state of										
Image: state of the state of		-								
Image: state of the state of										
Image: state of the state of										
Image: state of the state										
		ļ								
		<u> </u>								

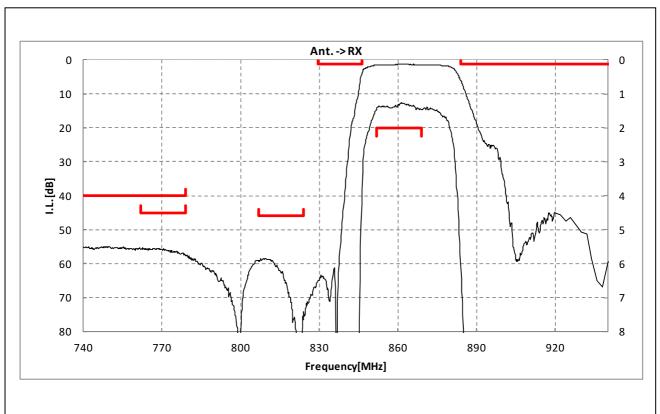
* Typical value at 25±2deg.C

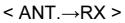

Electrical Characteristic $< TX \rightarrow RX. >$

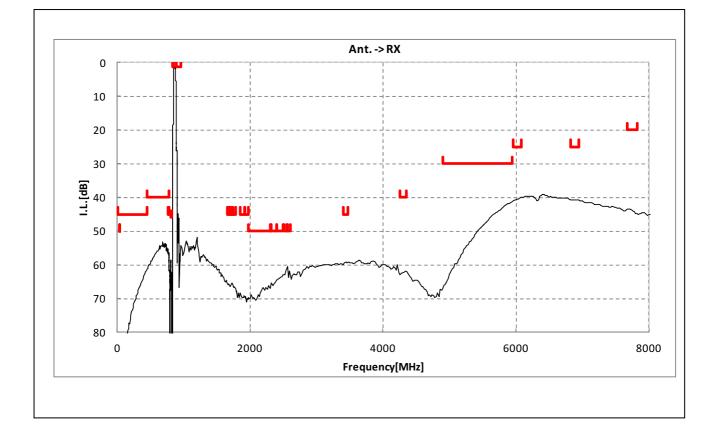

	Tx→Rx		Cha (-20	iracteri to +85 d	stics eg.C)	Unit	Note	
			min.	typ.*	max.			
solation	807. to	824. MHz	55	58		dB	Тх	
oolation		821.5 MHz	55	59		dB _{INT}	Tx, Any 4.5MHz	
		869. MHz		58		dB	Rx	
		866.5 MHz	55	59		dB _{INT}	Rx, Any 4.5MHz	
	1574. to 1	577. MHz	40	58		dB	Rx, Any 4.5MHz GPS	
	1704. to 1	738. MHz	20	57		dB	2f	
	2556. to 2	607. MHz	20	52		dB	3f	
				ļ				
				L				
			1					
			1					
			1	1				
				İ				
				l				
			I					


* Typical value at 25±2deg.C

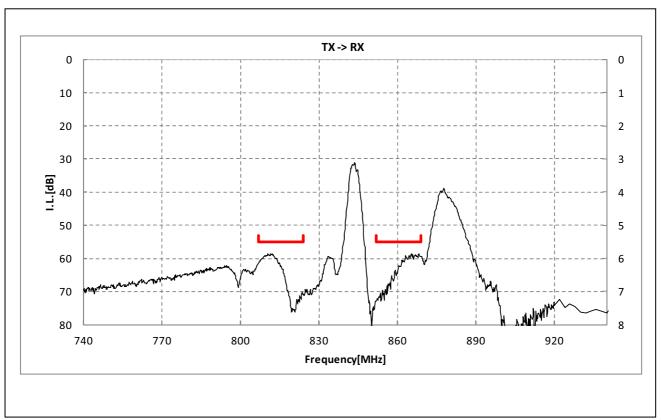
Electrical Characteristic

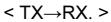


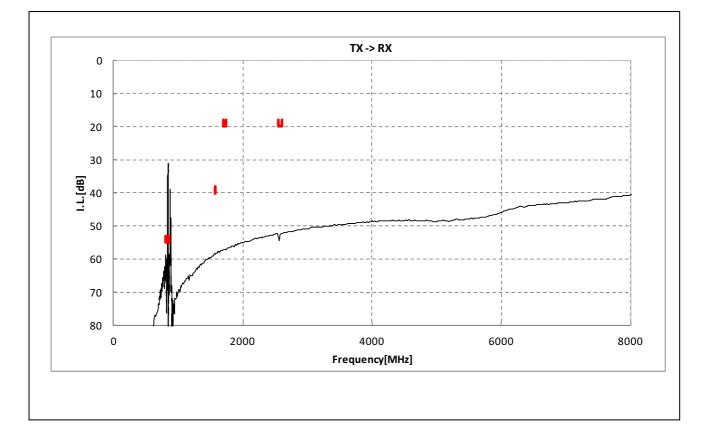




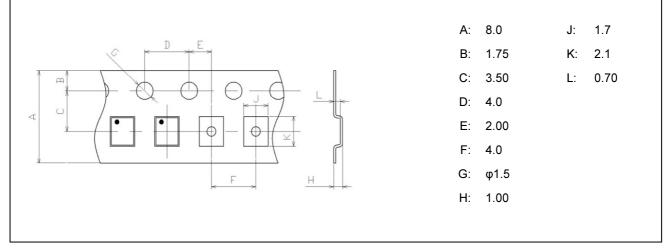
Electrical Characteristic

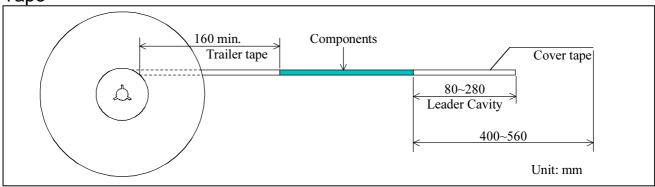




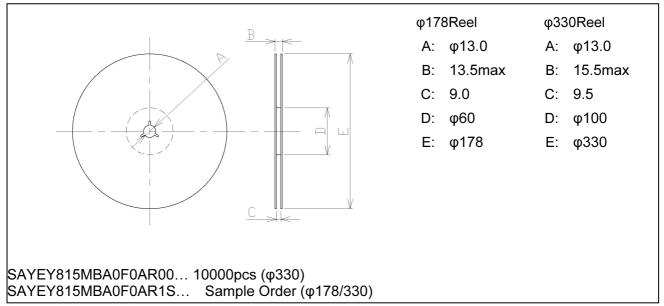


Electrical Characteristic





Dimensions of Tape & Reel unit: mm


Carrier Tape

Tape

Reel

Marking Code

Table A: Month Code

CI.	//0 / \.	wone											
Г	2013	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
	2017 2021	Α	В	С	D	Е	F	G	н	J	ĸ	L	м
Γ	2014	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
	2018 2022	Ν	Ρ	Q	R	S	Т	U	V	¥	х	Y	Z
Г	2015	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
	2019 2023	а	р	ю	d	e	f	u	h	j	k	l	m
Г	2016	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
	2020 2024	n	p	Ŷ	r	ł	t	a	U	3	K	y	8

Table B: Date Code

date	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	
code	А	В	С	D	E	F	G	Н	J	К	
date	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	
code	L	М	Ν	Р	Q	R	S	Т	U	V	
date	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
code	W	Х	Y	Z	а	b	ī	d	е	f	g

Important Notice (1/2)

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product when our product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the products is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The product shall not be used in any application listed below which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property. You acknowledge and agree that, if you use our products in such applications, we will not be responsible for any failure to meet such requirements.

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN SUCH APPLICATIONS.

Important Notice (2/2)

- Aircraft equipment.
- Aerospace equipment
- Undersea equipment.
- Power plant control equipment Medical equipment.
- Transportation equipment (vehicles, trains, ships, elevator, etc.).
- Traffic signal equipment.
- Disaster prevention / crime prevention equipment.
- Burning / explosion control equipment
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the product in molding condition.

This product is ESD (ElectroStatic Discharge) sensitive device. When you install or measure this, you should be careful not to add antistatic electricity or high voltage. Please be advised that you had better check anti serge voltage.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use. Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

•the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the product to be sold by you,

·deviation or lapse in function of engineering sample,

·improper use of engineering samples.

We disclaim any liability for consequential and incidental damages.

If you can't agree the above contents, you should inquire our sales.