

Isolated 1W Regulated Single Output AC/DC Converters

FEATURES

- UL62368-1 recognized
- EN62368-1 certified
- IEC61558-1 certified
- ANSI/AAMI ES60601-1, 1 MOPP/2 MOOP's recognition pending
- Wide input voltage range 85-305VAC/ 70-400VDC
- Operating temperature range –40°C to 85°C
- 4kVAC isolation 'Hi Pot Test'
- 5V, 12V & 24V single regulated outputs
- Short circuit protection
- No optocoupler
- Low standby power

PRODUCT OVERVIEW

The BAC1 series is the first series release from the BAC family of board mount AC/DC converters. The BAC1 series operates over the wide industrial temperature range of -40°C to +85°C, supporting operation in still air for the most demanding environments. Models are capable of operation to 85°C, and operate from -40°C. The BAC1 has ultra low standby power consumption for demanding energy and cost saving applications.

SELECTION G	UIDE															
Order Code	Output Power	Output Voltage	Output Current	Ripple & Noise		Efficiency				Isolation Capacitance	MT	TF¹				
				115V 8	& 230V	27	'7V	11	5V	23	OV	27	7V		217	Telcordia
	W	V	Α	Тур.	Max.	Тур.	Max.	Min.	Тур.	Min.	Тур.	Min.	Тур.	pF	MIL	Telc
					mVp-p				9	6				kŀ	Irs	
BAC1S05SC	1	5	0.2	50	120	50	120	70	74	69	73	67	71	11	1613	38213
BAC1S12SC	1	12	0.083	60	120	60	130	70	74	69	73	68	72	11	2038	44328
BAC1S24SC	1	24	0.042	85	120	100	150	68	73	67	71	64	69	11	1816	40463

Parameter	Conditions		Min.	Тур.	Max.	Units		
Vallana vanaa	All input types			85	115/230/277	305	VAC	
Voltage range	All input types			70		400	VDC	
Input frequency				47	50/60	63	Hz	
	Nominal Vin = 115	5VAC			50			
Conitabile er fera erra err	Nominal Vin = 115	5VAC	24Vin		35		1.11=	
Switching frequency	Nominal Vin = 230	OVAC/277VAC			40		kHz	
	Nominal Vin = 230	Nominal Vin = 230VAC/277VAC			25			
	Nominal Vin = 115VAC				25		mA	
Input current	Nominal Vin = 230VAC				17			
,	Nominal Vin = 277VAC				16			
lawah samaat	Nominal Vin = 115VAC Nominal Vin = 230VAC & 277VAC				6		Α.	
Inrush current					9		Α	
Input leakage current	230VAC				1		μA	
		115VAC	115VAC		20			
	BAC1S05SC	230VAC			61			
		277VAC	277VAC		85		1	
		115VAC	115VAC		58			
Stand by power	BAC1S12SC	230VAC			68		mW	
		277VAC			92			
		115VAC			26			
	BAC1S24SC	230VAC			81			
	277V				117			

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Isolation test voltage	Production tested for 1 seconds	4000			VAC
	Qualififcation tested for 1 minute	4000			VAC
Resistance	Viso = 1000VDC	100			MΩ

1. Calculated using MIL-HDBK-217F FN2 and Telcordia SR-332 calculation model at TA=25°C with nominal input voltage at full load. All specifications typical at TA=25°C, nominal input voltage, rated output current and recommended components unless otherwise specified

Parameter	Conditions		Min.	Тур.	Max.	Units	
Minimum load			5			%	
Initial valtage ecourage	5V output types				±5	%	
Initial voltage accuracy	All other output types				±4	70	
Line regulation	Low line to high line	5V output types		±0.3	±1	%	
Line regulation	Low line to high line	All other output types		±0.1	±1	%	
Load Regulation	5% total load to 100% total load			±0.2	±1.5	%	
Total regulation	Includes line, load, temperature and drift				±5	%	
Temperature coefficient					0.05	%/°C	
	Peak deviation - Single Output (50-75% & 7	BAC1S05SC			±4	%Vout	
	50% swing)	BAC1S12SC			±3		
Transient Response	30 /0 SWIIIg)	BAC1S24SC			±2		
	Settling time (within 1% Vout Nom.)	24V output type		8			
	Setting time (within 170 vout Norm.)	All other output types		6		ms	
Current limit inception	Auto-recovery	115VAC & 230VAC	150		280	%	
Current limit inception	Auto-recovery	277VAC	150		310		
		115VAC		50			
Hold up time	From power fail	230VAC		240		ms	
		277VAC		380			

TEMPERATURE CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Operation	Sealed box with no air flow	-40		85		
Storage		-40		125	۰C	
Product temperature rise above				16	U	
ambient				10		

ABSOLUTE MAXIMUM RATINGS	
Short-circuit protection	Continuous
Input voltage Vin	310VAC
Wave solder	Wave Solder profile not to exceed the profile recommended in IEC 61760-1 Section 6.1.3. Please refer to <u>application notes</u> for further information.
Lead temperature 1.0mm from case for 7 seconds (to JEDEC JESD22-B106)	270°C

Isolated 1W Regulated Single Output AC/DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions BAC1 series of AC-DC converters are all 100% production tested at their stated isolation voltage. This is 4kVAC for 3 seconds.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The BAC1 series has been recognized by Underwriters Laboratory to 277VAC for Reinforced Insulation.

The BAC1 series has been certified by Demko to 277VAC for Reinforced Insulation.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL

ANSI/AAMI ES60601-1

The BAC1 series is pending recognition by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 2 M00P (Means of Operator Protection) and 1 M0PP (means of patient protection) based upon a working voltage of 277VAC max., between Primary and Secondary. File number E202895 applies.

EN62368-

The BAC1 series has been certified by Demko (D) to EN62368 for reinforced insulation to a working voltage of 277VAC. Certificate number D-07177 applies.

UL62368-1

The BAC1 series has been recognized by Underwriters Laboratory (UL) to UL62368 for reinforced insulation to a working voltage of 277VAC. File number E151252 applies.

Creepage 8.3mm and clearance 6.6mm Working altitude OVC II 5000m

FUSING

As stated in the application notes, to meet datasheet specifications it is required that a 1W 10Ω fusible resistor is fitted.

IEC61558-1

The BAC1 series has been certified by TUV SUD to IEC61558-1.

Input 100-240VAC, 50-60Hz; 0.03A; Output 5-24VDC; 0.2-0.042A; 1W. Maximum ambient of 70°C

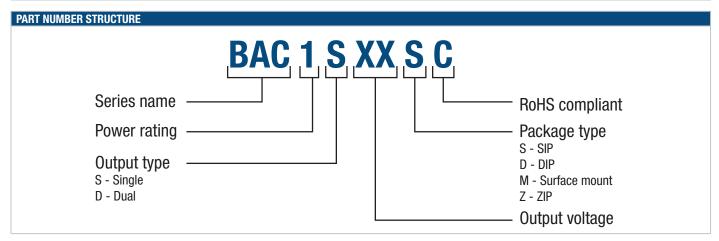
Working altitude OVC II 5000m

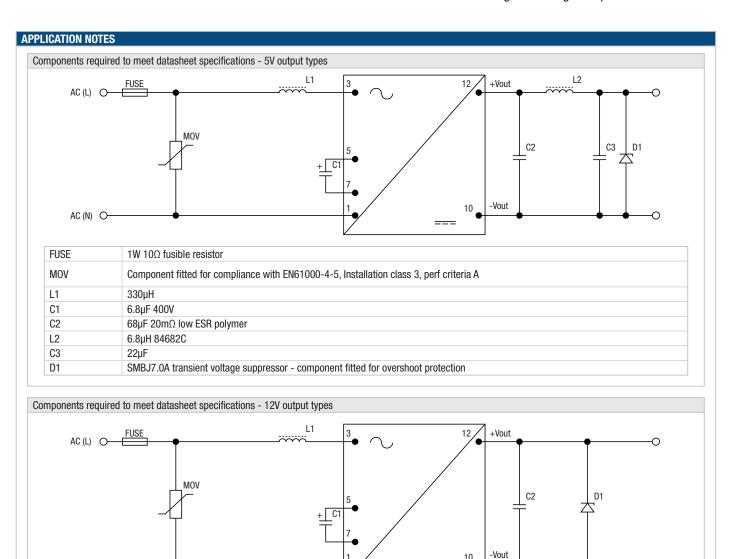
II Up to 5000m

(A)

Fuse: 100mA, Time-lag T

ROHS COMPLIANCE INFORMATION

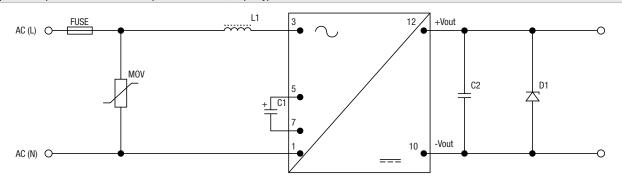



This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds based on IEC 61760-1. Please refer to application notes for further information. The pin termination finish on this product series is Hot Dipped over Matte Tin with Nickel Preplate. The series is backward compatible

with Sn/Pb soldering systems. For further information, please visit www.murata-ps.com/rohs

ENVIRONMENTAL VAL	IDATION TESTING	
The following tests have b	peen conducted on this product series, plea	se contact Murata if further information about the tests is required.
Test	Standard	Condition
Temperature Cycling	JEDEC JESD22-A104	200 cycles40°C to 105°C, 15 minutes hold at each extreme.
HAST (Unbiased)	JEDEC JESD22-A118	96Hrs +2/-0Hrs at 130°C ± 2°C, 85% ± 5% R.H.
Storage Life	JEDEC JESD22-A103, Condition A	125°C +10/-0°C for ≥1000 hours
Vibration	BS EN 61373 with respect to BS EN 60068-2-64 2008, Test Fh Category 1 Class B	5 – 150Hz. Level at each axis – Vertical, Traverse and Longitudinal: 5.72m/s² rms. 5 hours in each axis. Crest factor: 3 Sigma. Device is secured via pins/leads.
Shock	BS EN 61373: 2010, Category 1 Class B	Test is 30ms duration, 3 shocks in each sense of 3 mutually perpendicular axes (18 shocks total). Level at each axis as follows: Vertical, Traverse and Longitudinal: 50m/s². Device is secured via pins/leads.
Solderability	IPC/ECA J-STD-002, Test A1	Parts are baked for 4 hours at a temperature off 155°C, within 72 hours they are dipped in flux for 10 seconds Followed by dipping the parts in a solder pot at 255° C $\pm 5^{\circ}$ C for 5 seconds (96SC tin/silver/copper)
Solvent cleaning	Resistance to cleaning agents.	Solvent – Novec 71IPA & Topklean EL-20A. Pulsed ultrasonic immersion 45°C- 65°C
Solvent resistance	MIL-STD-883, Method 2015	The parts and the bristle portion of the brush are immersed in Isopropanol for a minimum of 1 minute. The parts are brushed 3 times, after the third time the parts are blown dry and inspected.
Solder Heat	JEDEC JESD22-B106	The test sample is subjected to a molten solder bath at $270 \pm 5^{\circ}$ C for $7 + 2/-0$ seconds (96SC tin/silver/coppe The leads are dipped in the solder bath to within 1mm of the device body.
Solder Heat (Hand)	MIL-STD 202, Method 210, Condition A	The soldering iron is heated to 350° C \pm 10° C and applied to the terminations for a duration of 4 to 5 seconds
Lead Integrity (Adhesion)	MIL-STD 883, Method 2025	Leads are bent through 90° until a fracture occurs.
Lead Integrity (Fatigue)	MIL-STD 883, Method 2004, Condition B ₁	The leads are bent to an angle of 15°. Each lead is subjected to 3 cycles.
Lead Integrity (Tension/ Pull)	MIL-STD 883, Method 2004, Condition A	Pull of 0.227kg applied for 30 seconds. The force is then increased until the pins snap.

EMC STANDARDS	
Conducted input noise	EN55032, Class B with external X cap
Radiated noise	EN55032, Class B
ESD immunity	IEC/EN61000-4-2 level 3 perf criteria A
Conducted transient immunity	EN61000-4-6, 10 Vrms, perf criteria A
Conducted surge immunity	EN61000-4-5, Installation class 3, perf criteria A
EFT/Burst	EN61000-4-4, level 3, perf criteria A
Radiated field immunity	EN61000-4-3, 10 V/m, perf criteria A
Dips and interruptions	EN61000-4-11, 100% reduction for 20ms (A), 60% reduction for 200ms (A), 30% reduction for 500ms (A), 100% reduction for 5s (B)
Magnetic fields	EN61000-4-8 30A/m, perf criteria A


FUSE	$1W 10\Omega$ fusible resistor
MOV	Component fitted for compliance with EN61000-4-5, Installation class 3, perf criteria A
L1	330µH
C1	6.8µF 400V
C2	68μ F $20m\Omega$ low ESR polymer
D1	SMBJ20A transient voltage suppressor - component fitted for overshoot protection

10

AC (N) O-

APPLICATION NOTES (Continued)

FUSE	$1W 10\Omega$ fusible resistor
MOV	Component fitted for compliance with EN61000-4-5, Installation class 3, perf criteria A
L1	330µH
C1	6.8µF 400V
C2	47μ F $25m\Omega$ low ESR polymer
D1	SMBJ30A transient voltage suppressor - component fitted for overshoot protection

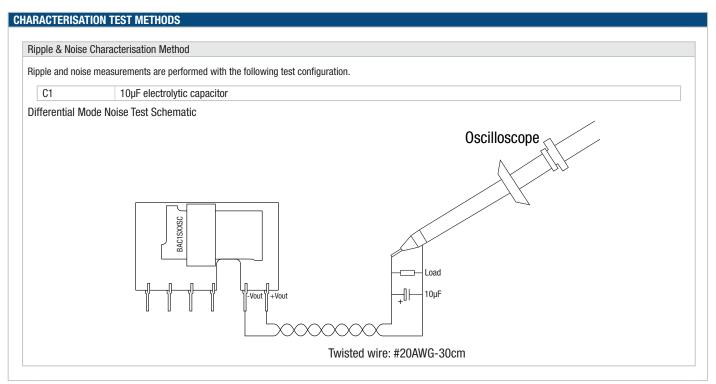
Advisory Notes

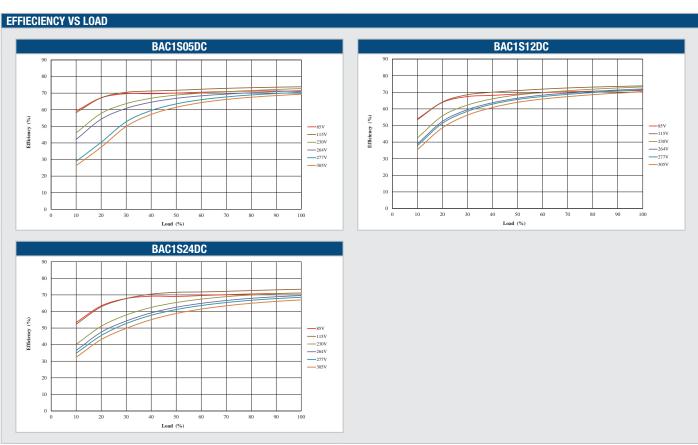
The BAC1 series is not hermetically sealed, customers should ensure that parts are fully dried before input power application.

Output Capacitance and start-up times

The recommended specified caps on page 4 and 5 can already meet datasheet specification, there is no need to add extra caps. However, if customers connects to load capacitance, the below load capacitance are max (additional to recommended specified caps) to ensure start up at minimum AC input.

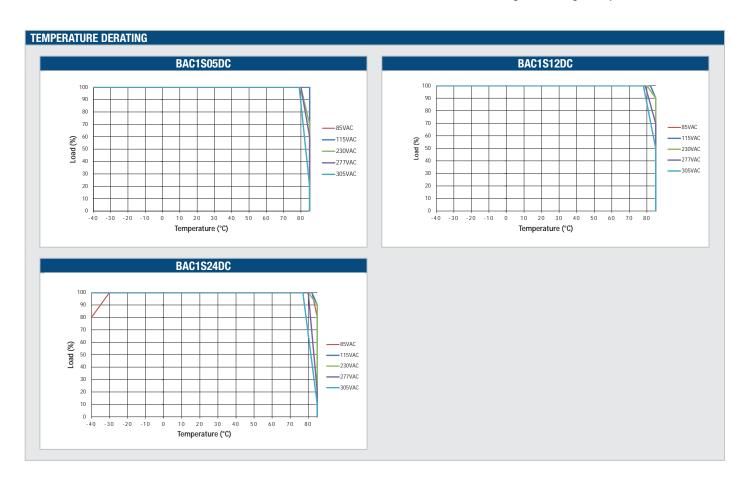
Part No.	Maximum Load Capacitance (per output)	Start-up times (AC input)	Start-up times (DC input)
Fait No.	μF	S	S
BAC1S05SC	220	0.5	5
BAC1S12SC	100	1	5
BAC1S24SC	100	1	5

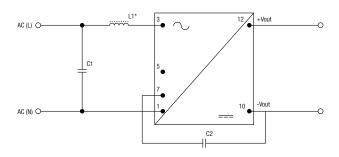

Minimum Load


The minimum load to meet full datasheet specification is 5% of the full rated load across the specified input voltage range.

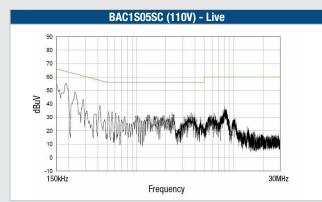
24V output type - minimum input voltage requirements

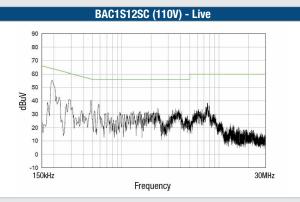
At -40C the part is guaranteed to start into 100% load with a minimum input voltage of 115Vac; once the product is operating, the product will continue to operate at lower input voltages with higher output loading.

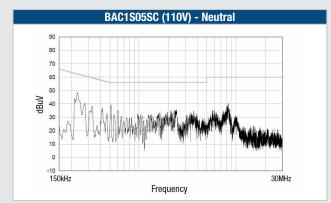

The product will start at -40C with 80% or lower load with an input voltage of 100VAC; once the product is operating, the product will continue to operate at lower input voltages with higher output loading.

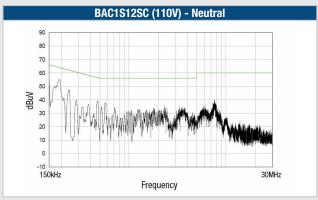


EMC FILTERING AND SPECTRA

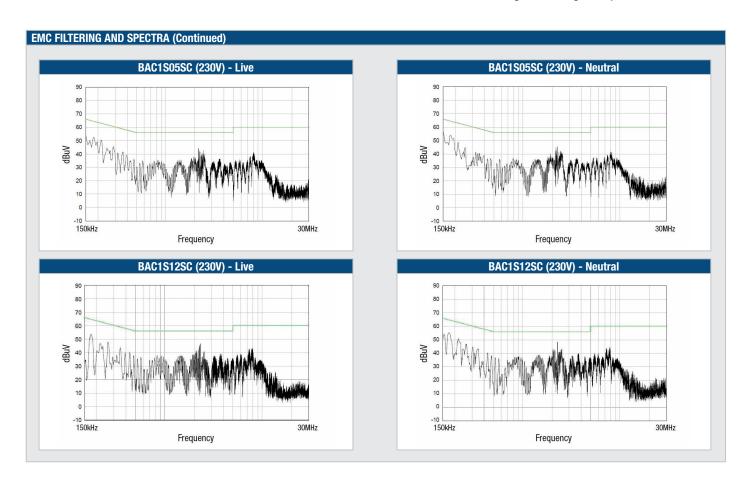

FILTERING

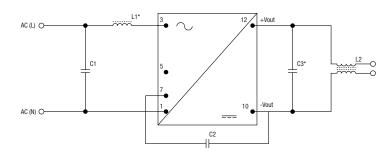

The following filter circuit and filter table shows the input filters typically required to meet EN55032 Quasi-Peak (green line) Curve B limit vs peak conducted emisions.



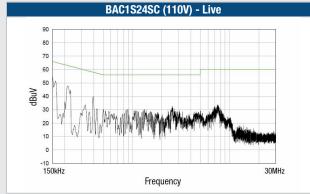

5V and 12V output types			
Component	Description		
C1	68nF 305VAC		
L1	refer to "components required to match datasheet specifications"		
C2	100pF Y-cap		

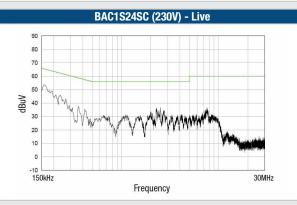
Components marked with an asterisk are already fitted and should not be duplicated

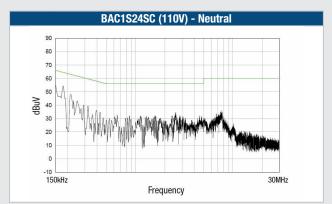


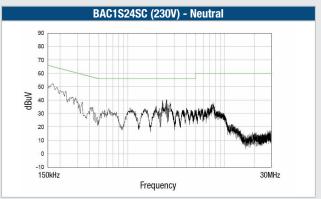


EMC FILTERING AND SPECTRA (Continued)

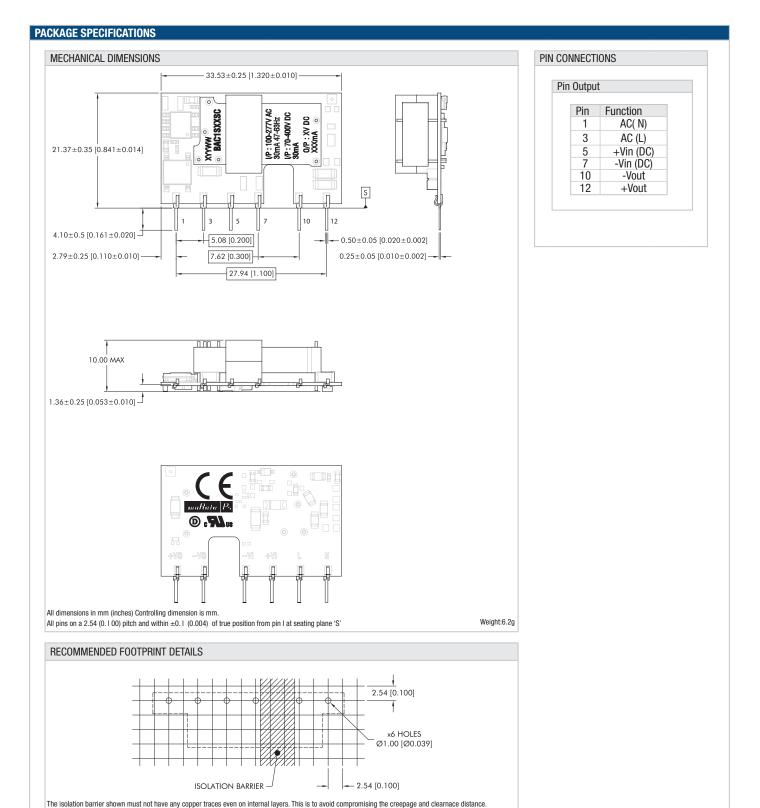

FILTERING

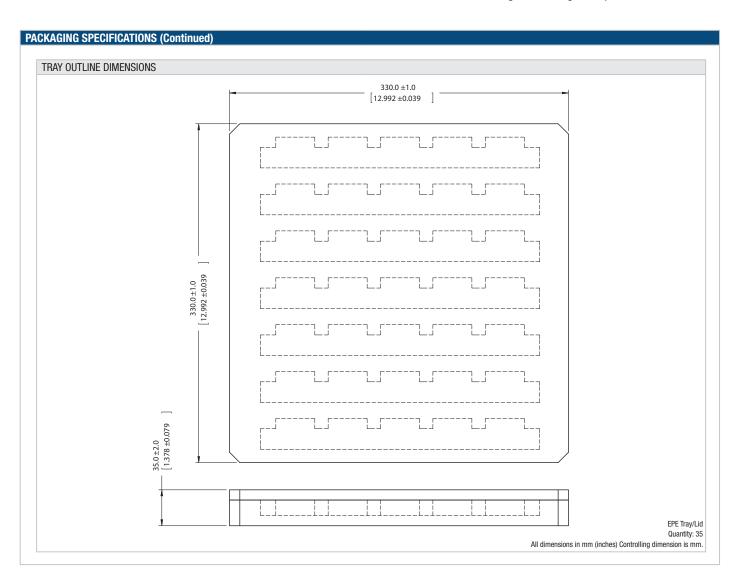

The following filter circuit and filter table shows the input filters typically required to meet EN55032 Quasi-Peak (green line) Curve B peak conducted emisions.




BAC1S24SC	
Component	Description
C1	68nF 305VAC
L1	refer to "components required to match datasheet specifications"
C2	100pF Y-cap
C3	refer to "components required to match datasheet specifications"
L2	DLW21SN261SQ2L

Components marked with an asterisk are already fitted and should not be duplicated





All dimensions in mm (inches).

PCB layouts must take into consideration the required clearance and creepage requirements to maintain the clearance and creepage of the isolation barrier.

Isolated 1W Regulated Single Output AC/DC Converters

DISCLAIMER

Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions (Milton Keynes) Ltd. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein too timply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2021 Murata Power Solutions (Milton Keynes) Ltd.