

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

FEATURES

- Patent protected
- Optimised output voltages designed to meet leading GaN devices requirements
- UL62368-1 recognised
- 3kVAC isolation test voltage 'Hi Pot Test'
- Ultra low isolation capacitance
- Surface mount package style
- 5V & 12V inputs
- +8V, +12V & +6V/-3V outputs
- Operation up to 105°C
- Short circuit protection
- Reverse polarity protection
- Characterised CMTI >200kV/µS
- Continuous barrier withstand voltage 1.1kV
- Characterised partial discharge performance

PRODUCT OVERVIEW

The MGN1 series of DC-DC converters is ideal for powering 'high side' and 'low side' gate drive circuits for GaN in bridge circuits. A choice of output voltages allows optimum drive levels for best system efficiency. The MGN1 series is characterised for high isolation requirements commonly seen in bridge circuits used in motor drives and inverters, while the MGN1 industrial grade temperature rating and construction gives long service life and reliability.

SELECTION GUID)E									
		. 	2	. 	2		Outp	out 1	Outp	out 2
Order Code ¹	Nominal Input Voltage	Output Voltage	Output Voltage	Output Current	Output Current	Input Current at Rated Load	Load Regulation (Typ)	Load Regulation (Max)	Load Regulation (Typ)	Load Regulation (Max)
	V	V	V		mA			9	6	
MGN1S0508MC	5	8	-	125	-	310	2.5	4	-	-
MGN1S0512MC	5	12	-	83.3	-	310	1.7	4	-	-
MGN1S1208MC	12	8	-	125	-	130	2.5	4	-	-
MGN1S1212MC	12	12	-	83.3	-	120	1.7	4	-	-
MGN1D050603MC	5	6	-3	111	111	320	0.3	1	7	10
MGN1D120603MC	12	6	-3	111	111	130	0.3	1	6	8

SELECTION GUIDE (Continued)

Order Code ¹	Ripple & Noise (Typ) ³	Ripple & Noise (Max) ³	Efficiency (Min)	Efficiency (Typ)	Isolation Capacitance		¥ L III
	mVp-p		%		pF	MIL.	Tel.
						KI	Irs
MGN1S0508MC	20	50	58	61	2.5	2542	32674
MGN1S0512MC	20	50	58	62.5	2.5	2263	30885
MGN1S1208MC	20	50	62	67.5	2.5	2128	34861
MGN1S1212MC	20	50	65	69	2.5	2484	38343
MGN1D050603MC	20	50	58	62	2.5	1503	24882
MGN1D120603MC	20	50	64	68.5	2.5	1696	31467

INPUT CHARACTERISTICS										
Parameter	Conditions	Min.	Тур.	Max.	Units					
Valtara vanna	Continuous operation, 5V input types	4.5	5	5.5	v					
Voltage range	Continuous operation, 12V input types	10.8	12	13.2	v					
	MGN1S0508MC, MGN1D050603MC		120							
	MGN1S0512MC		130							
Input short circuit	MGN1S1208MC		70		mA					
current I _{sc}	MGN1S1212MC		60							
	MGN1D120603MC		65							
Input reflected ripple	MGN1S0508MC, MGN1S0512MC, MGN1S1208MC, MGN1D120603MC		35		mA					
	MGN1S1212MC		30		р-р					
	MGN1D050603MC		40		1					

GENERAL CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Curitoping froquency	5V input type		150		LU-		
Switching frequency	12V input type		160		kHz		

- 1. Components are supplied in tape and reel packaging, please refer to package specification section. Orderable part numbers are MGN1SXXXXMC-R7/MGN1DXXXXXMC-R7 (155 pieces per reel), or MGN1SXXXXMC-R13/MGN1DXXXXXMC-R13 (620 pieces per reel).
- 2. Calculated using MIL-HDBK-217 FN2 and Telcordia SR-332 calculation model with nominal input voltage at full load.
- 3. See ripple & noise test method.

All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.

www.murata.com

global/products/power/rohs

Murata Ps Murata Power Solutions MGN1 Series 3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

MGN1 Series

Parameter	Conditions		Min.	Тур.	Max.	Units	
Rated Power	T _A =-40°C to 105°C				1	W	
Minimum load			1			mA	
		-3V output			-5		
Maximum output voltage ¹	1mA external load	6V output			6.25	v	
Maximum output voltage	TITIA external loau	8V output			10	v	
		12V output			15		
	MGN1S0508MC		-6		-1		
	MGN1S0512MC	-2		2			
	MGN1S1208MC	3		7	%		
Voltage Cat Daint Acquiracu ²	MGN1S1212MC	1		5			
Voltage Set Point Accuracy ²	MGN1D050603MC	0P1	-3		4	70	
		0P2	-6		5		
		0P1	-2		5		
	MGN1D120603MC	0P2	16		26		
	MGN1S0508MC, MGN1S0512M0	C & MGN1S1212MC		1.1	1.2		
	MGN1S1208MC			1.2	1.25		
Line regulation	MCN1D050602MC	0P1		0.1	0.2	0/ /0/	
	MGN1D050603MC	0P2		3.2	3.5	%/%	
	MCN1D120602MC	0P1		0.1	0.2		
	MGN1D120603MC	0P2		3.2	3.5	1	

ISOLATION CHARACTERISTICS										
Parameter		Conditions	Conditions			Max.	Units			
Isolation test voltage		Production tested for 1 second					VAC			
		Qualification tested for 1 minute					VAC			
Resistance	Resistance Viso= 1000VDC			10			GΩ			
Continuous barrier withstand voltage		Non-safety barrier application				1100	VDC			
Safety standard	UL62368-1	Reinforced	Creepage and clearance 6.5mm			250	Vrms			
	020200-1	Basic	Creepage and crediance 6.5mm			650	VDC			

TEMPERATURE CHARACTER	RISTICS					
Parameter	Conditions		Min.	Тур.	Max.	Units
Specification	see derating curves		-40		105	
Storage			-40		125	
	MGN1S0508MC	1 Layer PCB		31		
	WIGHT 130300IVIC	4 Layer PCB		15		
	MGN1S0512MC	1 Layer PCB		34		-
		4 Layer PCB		17		
	MGN1S1208MC	1 Layer PCB		27		°C
Product Temperature above		4 Layer PCB		15		0
ambient		1 Layer PCB		23		
	MGN1S1212MC	4 Layer PCB		10		
	MONTRACOONA	1 Layer PCB		29		
	MGN1D050603MC	4 Layer PCB		15		
	MCN1D120602MC	1 Layer PCB		22		
	MGN1D120603MC 4 Layer PCB			12		
Cooling	Free air convection					

ABSOLUTE MAXIMUM RATINGS	3	
Short-circuit protection		See graphs
Input voltage V _{IN} , MGN1X05		7V
Input voltage V _{IN} , MGN1X12		15V
Poverse polerity	MGN1X05	5.5V
Reverse polarity	MGN1X12	13.2V

1. Most gate drive circuits will have at least 1mA of standby current, if this is not the case an external bleed resistor may be necessary.

2. T_A= 25° C, nominal input voltage and 75% load.

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions MGN1 series of DC-DC converters are all 100% production tested at 3kVAC for 1 second and have been qualification tested at 3kVAC for 1 minute.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

When the insulation in the MGN1 series is not used as a safety barrier, i.e. provides functional isolation only, continuous or switched voltages across the barrier up to 1.1kV are sustainable. Long term reliability testing at these voltages continues. Peak Inception voltages measured were in excess of 1.1kV when testing for partial discharge in accordance with IEC60270. Please contact Murata for further information.

The MGN1 series is pending recognition by Underwriters Laboratory to 250VAC Reinforced Insulation, please see safety approval section below.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL

UL62368-1

The MGN1 series is recognised by Underwriters Laboratory (UL) to UL62368-1 for reinforced insulation to a working voltage of 250Vrms and for basic insulation to a working voltage of 650Vrms.

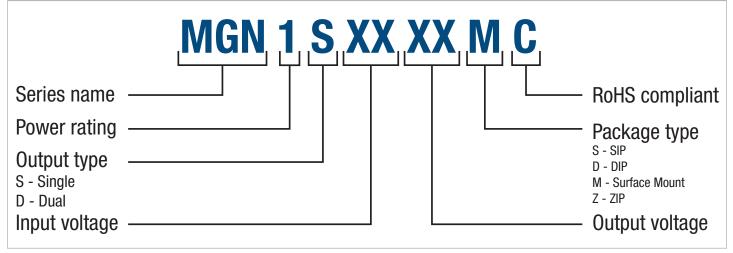
Creepage and clearance 6.5mm. Working altitude OVC II 5000m

FUSING

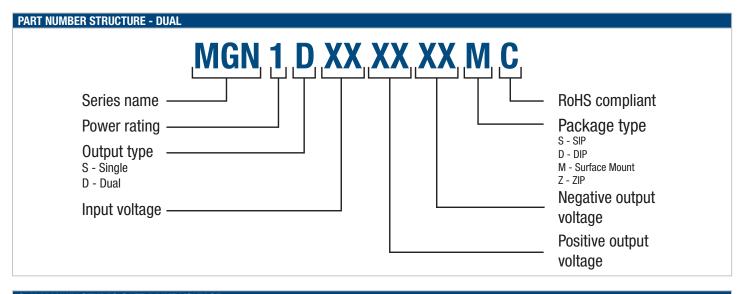
The MGN1 Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below.

Input Voltage, 5V 0.5A Input Voltage, 12V 0.25A All fuses should be Anti-Surge and UL rated.

RoHS COMPLIANCE AND MSL INFORMATION



This series is compatible with Pb-Free soldering systems and is also backward compatible with Sn/Pb soldering systems. The series can be soldered in accordance with J-STD-020. This series have a classification temperature of 260°C and moisture sensitivity level 2. The termination finish on this product is Gold with plating thickness 0.12 microns. For further information, please visit: www.murata.com/en-global/products/power/rohs


3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

ENVIRONMENTAL	VALIDATION TESTING	
The following tests ha	we been conducted on this product s	eries, please contact Murata if further information about the tests is required.
Test	Standard	Condition
Temperature cycling	JEDEC JESD22-A104	500 cycles in a dual zone chamber from -40 (+5/-10)°C to 105 (+10/-5)°C. 15mins dwell at each (inclusive of ramps). 2 cycles per hour
HAST (unbiased)	JEDEC JESD22-A118	130±2°C, 85±5% R.H. for 96 (+2/-0) hours
Storage life (high temperature)	JEDEC JESD22-A103, Condition A	125°C +10/-0°C for ≥1000 hours
Storage life (low temperature)	JEDEC JESD22-A119	-40°C -10/+0°C for ≥1000 hours
MSL	IPC/JEDEC J-STD-020	Bake samples at 125 +5/-0°C for 24 hours minimum before conditioning in the temperature/humidity chamber for 168 hours at 85°C/60%RH and Pb Free JEDEC Max profile conditioning with electrical testing, co-planarity, visual inspection before and after.
Vibration	JEDEC JESD22-B103	20Hz to 2 kHz to 20Hz (logarithmic variation) in >4 minutes, 4 times in each orientation (i.e. 12times), 50G (\pm 10%) peak acceleration. Sinusoidal Vibration.
Shock	JEDEC JESD22 B110	5 pulses half sine pulses of 0.5msec (\pm 15%)duration, 1500g (\pm 10%) peak acceleration. This equates to free state test level B in JESD22-B110 which states an Equivalent drop height of 112cm and a Velocity change 468cm/s (\pm 10%).
Solvent cleaning	Resistance to cleaning agents.	Solvent – Novec 71IPA & Topklean EL-20A. Pulsed ultrasonic immersion 45°C - 65°C

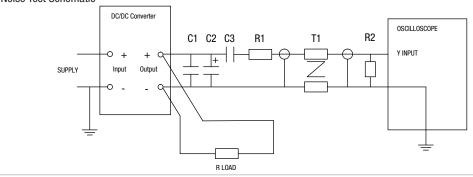
PART NUMBER STRUCTURE - SINGLE

MGN1 Series

Gan MANUFACTURES GATE DRIVE VOLTAGE						
GaN manufactures	Gate voltage	MGN1 part number				
GaN Systems	+6V/-3V	MGN1D050603MC & MGN1D120603MC				
Infineon	8V	MGN1D0508MC & MGN1D1208MC				
Texas Instruments	12V	MGN1D0512MC & MGN1D1212MC				
GanPower international	+6V/-3V	MGN1D050603MC & MGN1D120603MC				
Nexperia	12V	MGN1D0512MC & MGN1D1212MC				
Navitas	12V	MGN1D0512MC & MGN1D1212MC				
Transphorm	12V	MGN1D0512MC & MGN1D1212MC				

MGN1 Series

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

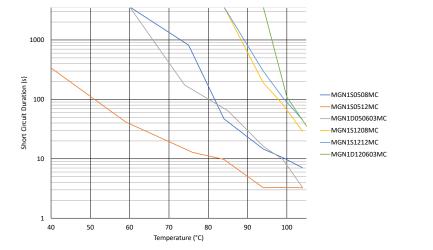

CHARACTERISATION TEST METHODS

Ripple & Noise Characterisation Method

Ripple and noise measurements are performed with the following test configuration.

C1	1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC-DC converter
C2	10μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC-DC converter with an ESR of less than $100m\Omega$ at 100 kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, \pm 1% tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC-DC converter. Connections should be made via twisted wires
Measured va	ues are multiplied by 10 to obtain the specified values.

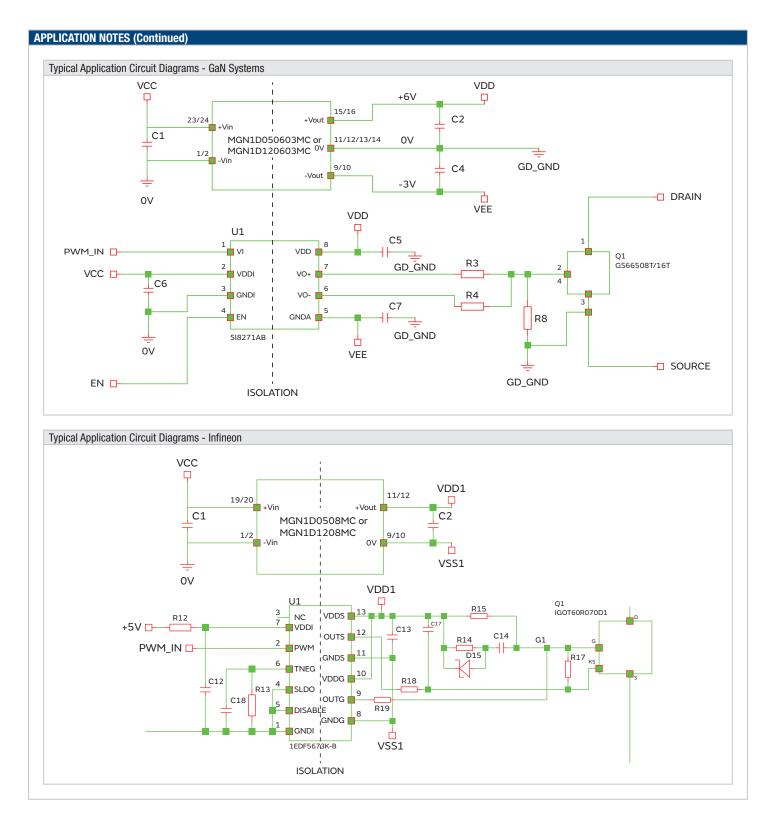
Differential Mode Noise Test Schematic

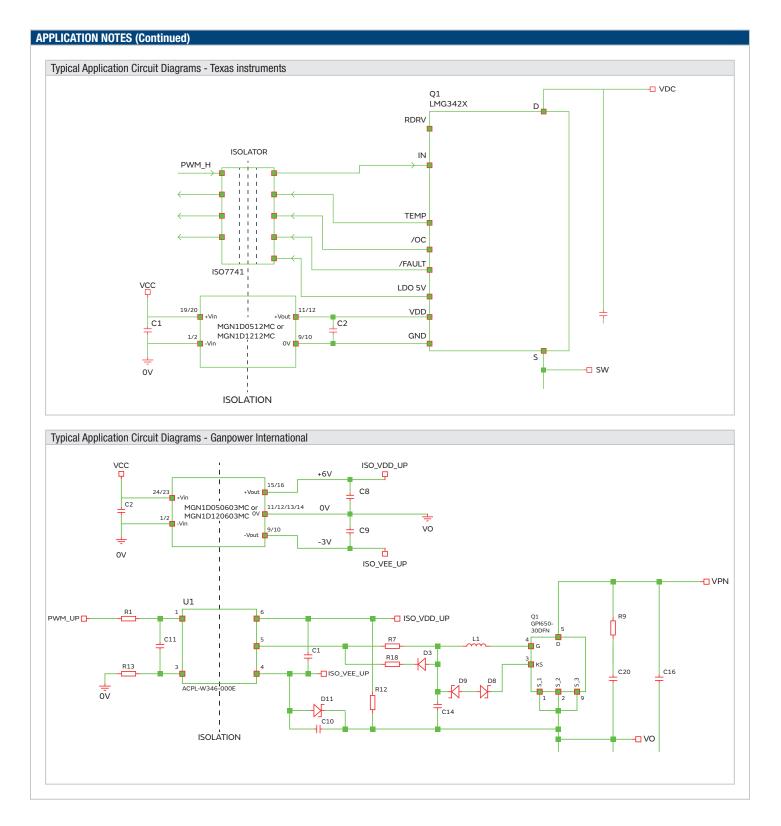

APPLICATION NOTES

Gate Drive Applications Advisory Note

For general guidance for product usage in gate drive applications please refer to "gate drive application notes".

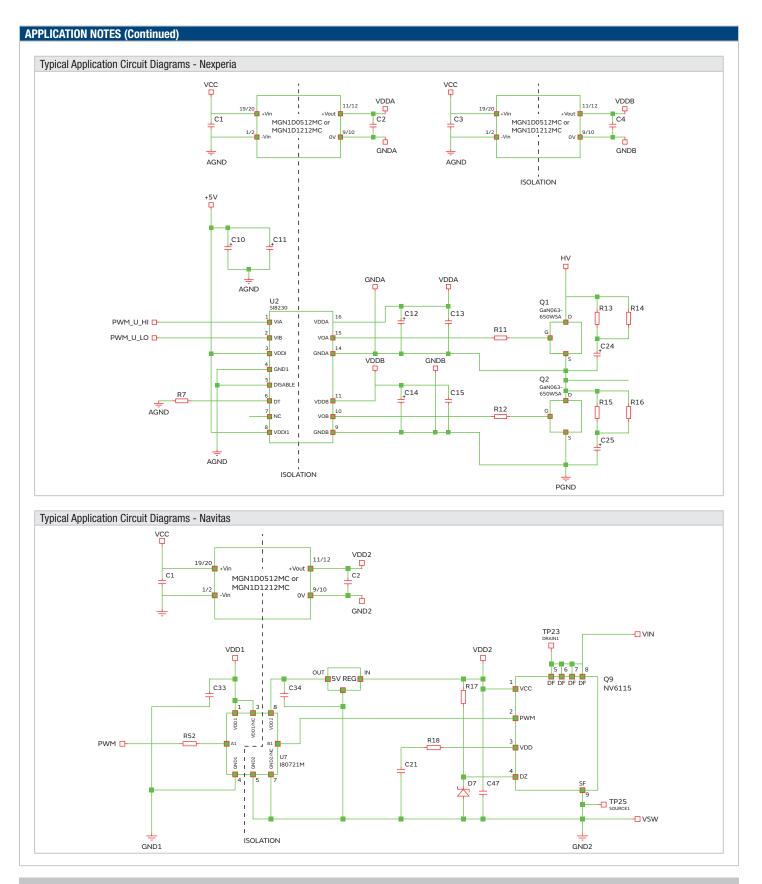
Short Circuit Performance


Below an ambient temperature of 40°C, the MGN1 short circuit protection is continuous. Above 40°C, short circuit duration time is reduced as shown in the following graph:


Typical Application Circuit Diagrams

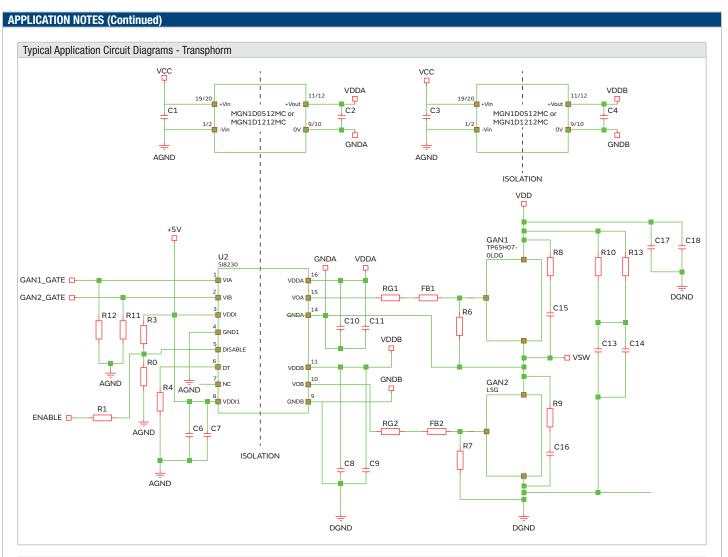
The following circuit diagrams are intended to provide guidance on how to connect the MGN1 series to GaN drivers for GaN devices. Please refer to GaN manufactures datasheets for full application circuits.

MGN1 Series



MGN1 Series

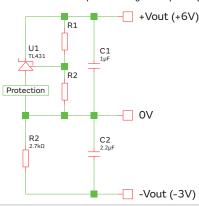
3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters



www.murata.com

<u>muRata</u> R Murata Power Solutions

MGN1 Series


3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

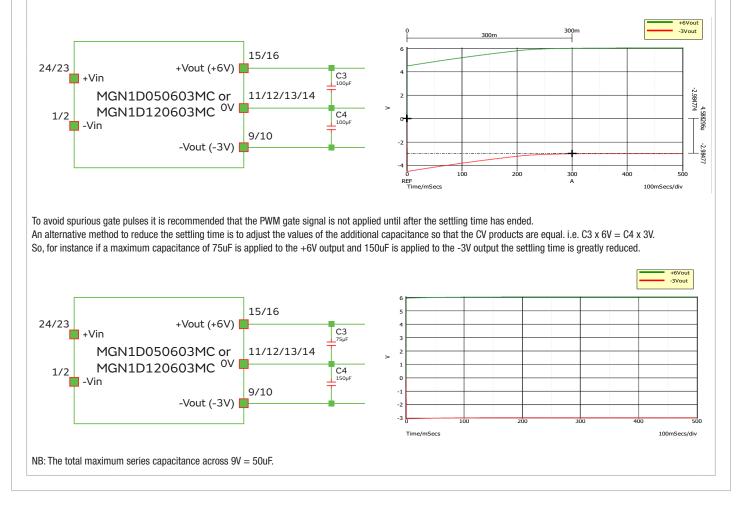
Dual Output Configuration

The MGN1D050603MC and MGN1D120603MC are dual output DC-DC converters specifically designed for gate drive applications and are not suitable for general purpose dual output use. However, each can be used as a general purpose single 9V output converter, by loading from +Vout to -Vout.

The MGN1D050603MC and MGN1D120603MC provide a dual output by using a reference IC and resistor divider network circuit with patented short circuit protection. This is important to maintain an accurate 6V to the gate of the GaN device over the temperature range and operating conditions, something a Zener diode cannot guarantee.

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

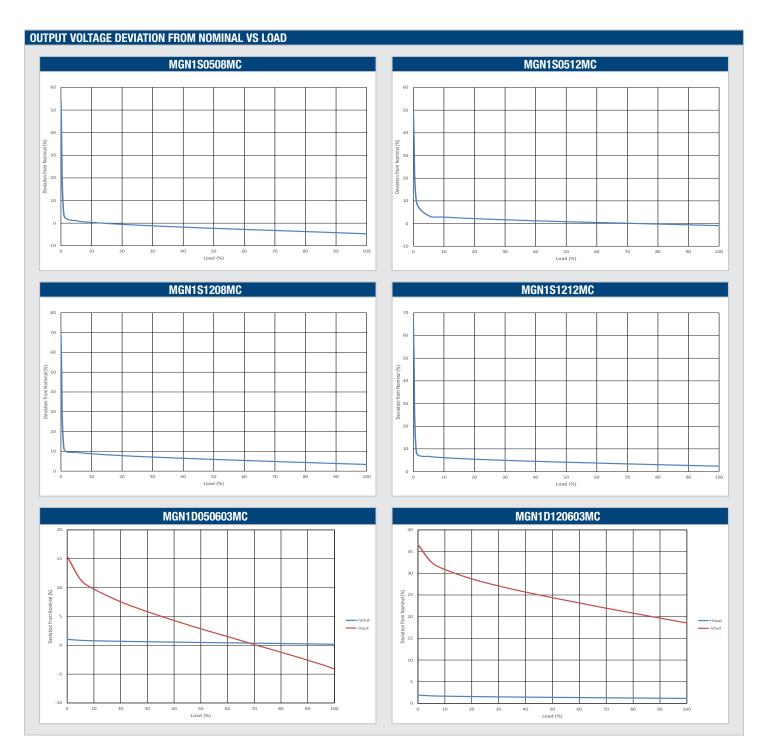
APPLICATION NOTES (Continued)


Capacitive loading and start up

The typical start up for single output variants, using a 56 μ F capacitor is 10mS. The start up behaviour of the +Vout and -Vout rails of a dual output DC-DC using a divider network depends significantly on the additional capacitance added to the outputs. This is because the two capacitors behave as a capacitive divider. If the two capacitors are equal and 9V is applied across them the outputs will initially start as +/-4.5V.

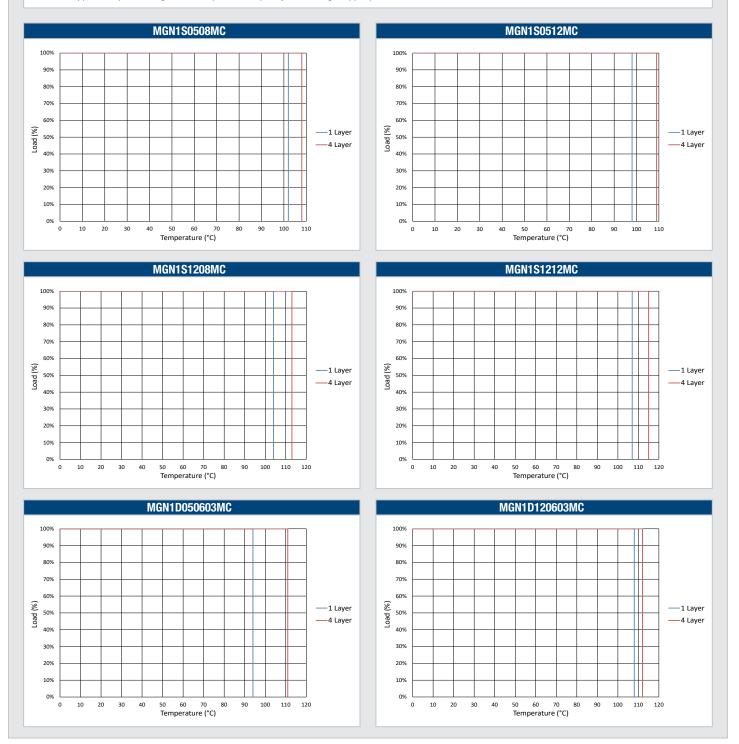
There will be a settling time while the divider circuit adjusts to the correct voltages, to calulcate the approixmate value please refer to the following formula.

Settling time \approx 3000 x C (s)


So, for instance if a maximum capacitance of 100uF is applied to each output the settling time will be about 300ms.

MGN1 Series

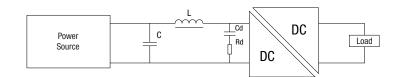
MGN1 Series



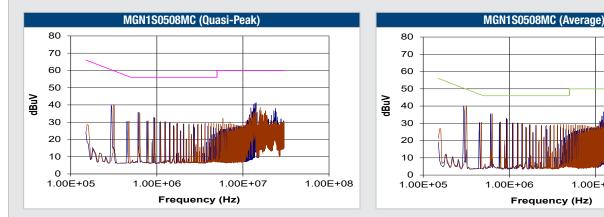
3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

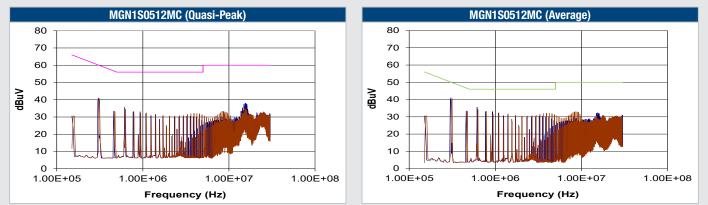
TEMPERATURE DERATING

The MGN1 series has been designed to minimise the thermal impedance when mounted onto a customers application PCB by using multiple surface mount pads for each connection. All thermal measurements were carried out in still air using a test pcb designed in accordance with standard JESD51-9 (Test Boards for Area Array Surface Mount Package Thermal Measurements). A single layer and a 4 layer have been used and this demonstrates that a higher operating temperature can be achieved when the customers application pcb is designed to incorporate multiple layers and large copper planes. Please contact Murata for further information.



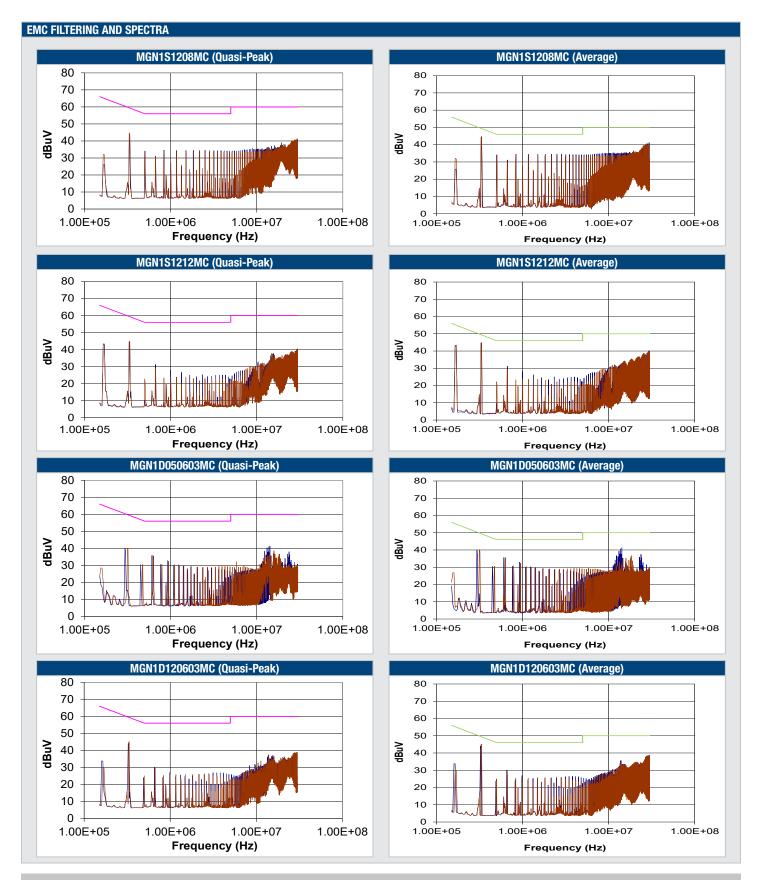
3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters


EMC FILTERING AND SPECTRA


FILTERING

The following filter circuit and filter table shows the input filters typically required to meet EN55022 Quasi-PeakCurve A or B.

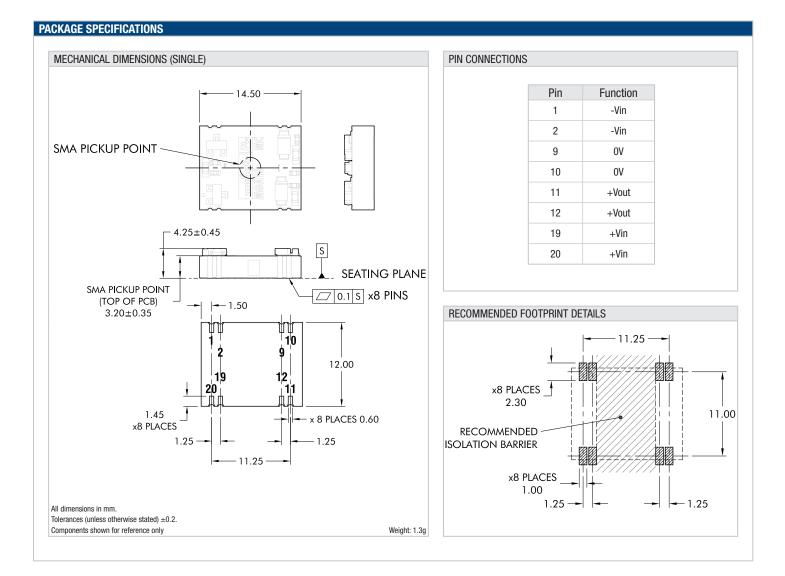
	Inductor			Capacitor	Resistor	Capacitor
	L, µH	SMD	C, µF	SMD	Rd, Ω	Cd, µF
MGN1S0508MC	22	29223C	10	GRM31CR61E106KA12L	3	10
MGN1S0512MC	22	29223C	10	GRM31CR61E106KA12L	3	10
MGN1S1208MC	10	34103C	10	GRM31CR61E106KA12L	3	10
MGN1S1212MC	10	34103C	10	GRM31CR61E106KA12L	3	10
MGN1S050603MC	22	29223C	10	GRM31CR61E106KA12L	3	10
MGN1S120603MC	10	34103C	10	GRM31CR61E106KA12L	3	10

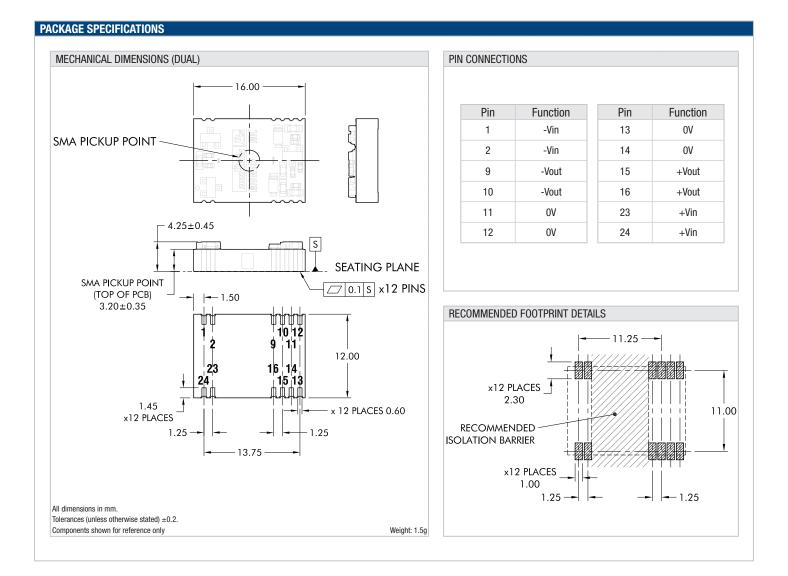

1.00E+08

1.00E+07

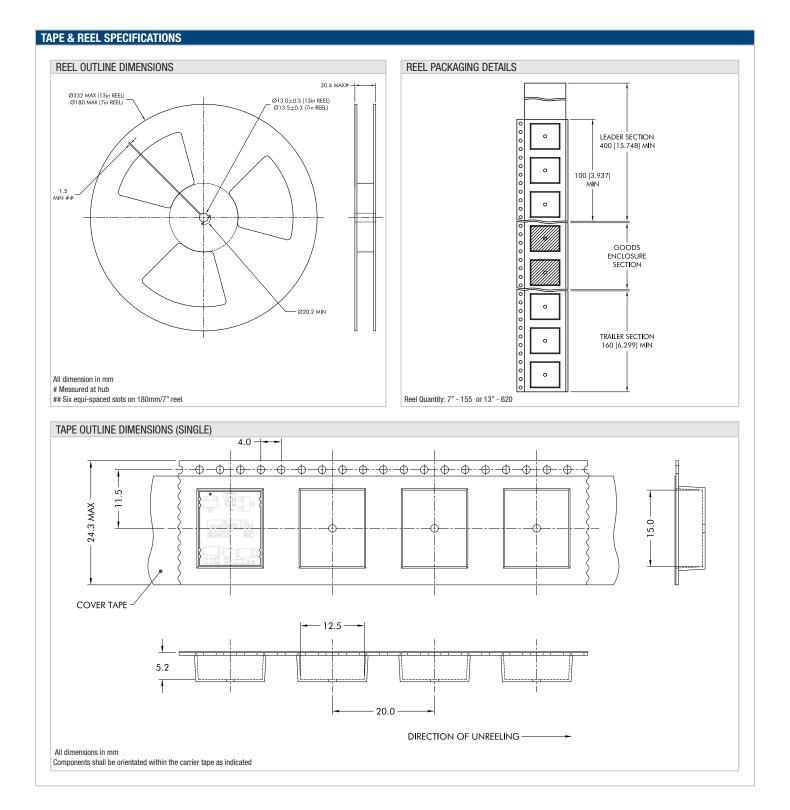
Frequency (Hz)

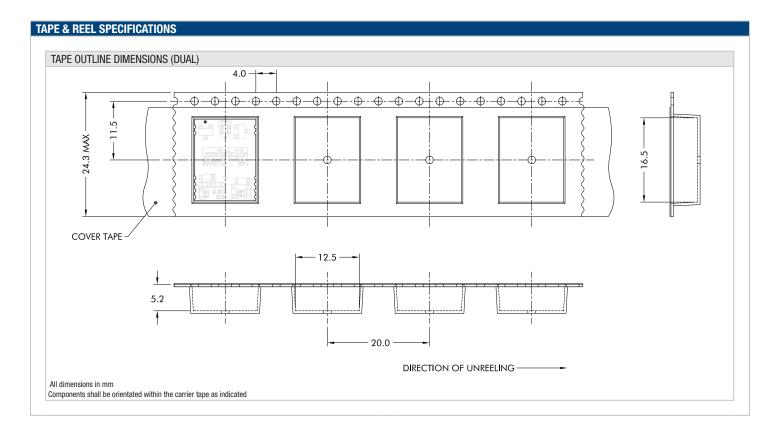
MGN1 Series


3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters


www.murata.com

KDC_MGN1_B01 Page 16 of 21


MGN1 Series


MGN1 Series

MGN1 Series

MGN1 Series

3kVAC Isolated 1W SM GaN Gate Drive DC-DC Converters

DISCLAIMER

Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/ or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: <u>https://www.murata.com/en-eu/products/power/requirements</u>

Murata Power Solution/Milton Keynes) Ltd. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of ticenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. © 2024 Murata Power Solution/Milton Keynes/ Ltd.